97. spotkanie [ONLINE] – Wykrywanie obiektów na obrazie

Spotkanie MLGdańsk #97 odbyło się 14 grudnia 2020 r.

Karol Majek, właściciel firmy Cufix, prowadzący bloga deepdrive.pl oraz mentor w programie Udacity Self-Driving Car Nanodegree przedstawił prezentację pod tytułem „Wykrywanie obiektów na obrazach

Prezentacja jest ciekawym materiałem zarówno dla początkujących jak i zaawansowanych praktyków uczenia maszynowego.

Na wstępie Karol wyjaśnił zagadnienia oraz pojęcia związane z zadaniami detekcji oraz segmentacji obrazów. Następnie opisał najnowocześniejsze architektury sieci neuronowych, niektóre liczące zaledwie kilka miesięcy. Zainteresowani użyciem tych rozwiązań znajdą w nagraniu przegląd frameworków oraz narzędzi, które mogą być pomocne w tworzeniu systemów analizy obrazu.

Po prezentacji wywiązała się interesująca dyskusja na temat algorytmów, pojazdów autonomicznych oraz implementacji sieci neuronowych na urządzeniach mobilnych.

Link do nagrania:

?https://www.youtube.com/watch?v=xPimQUoW6aY

Zapowiedź – 97. spotkanie [ONLINE] – Wykrywanie obiektów na obrazie

Serdecznie zapraszamy do uczestnictwa ONLINE w 97. spotkaniu grupy MLGdańsk.

Spotkanie odbędzie się w poniedziałek, 14.12.2020, godz. 18:00

link do Jitsi: https://meet.jit.si/MLGdansk_14122020_nb97
(uwaga: na każde spotkanie mamy nowy link!)

Prelegentem będzie Karol Majek (https://www.linkedin.com/in/karolmajek/)

Temat prelekcji to: Wykrywanie obiektów na obrazie

Dr inż. Karol Majek, były mentor programu Udacity Self-Driving Car Nanodegree, obecnie prowadzi firmę Cufix zajmującą się szkoleniami i konsultacjami wykorzystania głębokiego uczenia do analizy obrazu. Brał udział w licznych zawodach robotów i pojazdów autonomicznych takich jak ELROB, DARPA VRC, Enrich, Self-Racing Cars, F1/10.

Karol prowadzi bloga https://deepdrive.pl/ poświęconego tematyce głębokich sieci neuronowych, samochodów autonomicznych i robotyki.

Podczas prezentacji przedstawione zostaną zagadnienia wykrywania obiektów oraz historia metod. Zaprezentowane zostaną popularne obecnie metody, frameworki i zbiory danych z których warto korzystać w tworzeniu systemów wizyjnych.

Serdecznie zapraszamy!

96. spotkanie [ONLINE] – MLOps: Data Science End to End

Spotkanie MLGdańsk #96 odbyło się 30.11.2020 r. #mlgdansk

Amadeusz Lisiecki, na co dzień pracujący w firmie Roche jako “MLOps Engineer” oraz działający w Hackerspace Pomorze przybliżył nam co kryje się pod zagadkowym akronimem MLOps. #mlops #machinelearning

Tytuł prelekcji Amadeusza to: „MLOps: Data Science End-to-End”.

MLOps to zbiór dobrych praktyk i narzędzi stosowanych w tworzeniu systemów informatycznych wykorzystujących uczenie maszynowe. Metodyka powstała na wzór popularnej obecnie oraz sprawdzonej metodyki DevOps.

Tworzenie jak i utrzymywanie rozwiązań software’owych używających metod uczenia maszynowego różni się od tworzenia standardowych produktów informatycznych. 

Opracowanie takich systemów wiąże się z wyzwaniami w sposobie ich wdrażania, monitorowania i utrzymywania. Typowymi problemami w cyklu ich życia są: reprodukowalność eksperymentów, trenowanie modeli, wydajne serwowanie modeli na produkcji. Wskazane jest oczywiście wdrożenie CI/CD oraz specyficznego dla MLOps procesu CT – continuous training.

Amadeusz poruszył te zagadnienia w swojej prelekcji. Przedstawił zarys metodyk MLOps oraz opisał pomocne narzędzia.

Pierwszym z przedstawionych narzędzi było Kedro, które umożliwia tworzenie wygodnych pipelinów dla zadań ML. Framework Kedro powstał w Pythonie, dobrze współpracuje z notatnikami Jupyter oraz zawiera przydatne abstrakcje wspomagające tworzenie różnych wariantów eksperymentów i modeli. 

Na koniec Amadeusza przedstawił Kubeflow, czyli zestaw narzędzi dedykowanych uczeniu maszynowemu dla Kubernetesa. Kubeflow znacznie upraszcza pracę ze złożonymi pipelinami w systemach ML, oraz umożliwia łatwe skalowanie systemów.

Prezentacja ze spotkania dostępna po tym linkiem.

Nagranie ze spotkania:
??https://www.youtube.com/watch?v=I7v9pl702Wo&feature=youtu.be

Dodatkowe materiały: