
NORMALIZING FLOWS

IN THE SEARCH FOR MODELS THAT CORRECTLY DESCRIBE THE PROCESSES

THAT PRODUCE THE DATA

0

Source: PointFlow: 3D (Yang et. al)

Agenda

1. Intuition behind Normalizing Flows

2. Family of generative models and merits of Normalizing Flows

3. Mathematical definition

4. Constructing flows with finite composition

1. Review of transformation methods

2. Review of conditioning methods

5. Other common architectures

6. Comparison of different methods

1

The intuition behind the normalizing flows

• Transformation � is expanding and contracting the space in order to
mold the density ����� into �����

• det ������� quantifies the relative change of volume of a small
neighborhood
� around �.

2

Source: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Papamakarios et. al. (2019)

The intuition behind the normalizing flows

3

Dinh et. al. (2017) [1]

Familiy of generative models

Generative Adversarial Network (GAN)Autoregressiv models

Variational Auto Encoders (VAE)

4

Source: https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

Source: https://www.researchgate.net/figure/Generative-Adversarial-Network-GAN_fig1_317061929

Source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Merits of Normalizing Flows

Exact latent-variable inference and log-likelihood evaluation

Generative Adversarial Network
Autoregressiv models

Variational Auto Encoders

5

Merits of Normalizing Flows

Efficient inference and efficient synthesis

Generative Adversarial Network
Autoregressiv models

Variational Auto Encoders

6

Source: https://deepmind.com/blog/article/wavenet-generative-

model-raw-audio

Merits of Normalizing Flows

Useful latent space for downstream tasks

Generative Adversarial Network
Autoregressiv models

Variational Auto Encoders

7

Definition

General framework for constructing flexible probability distribution over
continuse random variable

� = � � , where � ~ �����

• � − � dimensional real vector

• � − � dimensional real vector

• �� � − base distribution eg. Normal

• � − invertible transformation where both � and �()are differentiable
�Diffeomorphishm�

8

Definition

• Density of � is well-defined

• Obtainable by a change of variables.
� ~ �����
� ~ �����
� = ����

�����
� = �� �
�

�� � = �� �
,�

,�

�� � = �� � |
,

,�
�()���|

�� � = �� �()��� | det �./0��� |

9

Implementing transformation in practice

� is implemented as a neural network taking ����� to be simple
density such as a multivariate normal.

It is common to chain toogether multiple transformations T

10

Important properites of normalizing flows

• Differomorphic functions are composable – Given two such
transformations �) and �1 their composition is also invertible and
differentiable

• As a consequence we can build complex transformations by
composing multiple instances of simpler transformations

11

The functionality of normalizing flows

• Sampling from the model

• � = � � , where � ~ �����

• Inference with the model

• � = �()���

• Evaluating density

• �� � = �� �()��� ∗ |det �./0 � |

Different computational requirements. Application should dictate
which need to be implemented efficiently.

12

The expressive power of flow based models

• For several autoregressive flows the universality property has been
proven.

• Universality means that the flow can learn any target density to any
required precision given sufficient capacity and data.

13

Expressive power of flow based models

• Suppose that ����� 3 0 for all � ∈ 67

• Suppose all conditional probabilities Pr ��′: ; �:|� < :� with �′:
being the random variable this probability refers to are differentiable
to ��:, � < :�

14

How to fit the model

• Forward KLD:

• We have samples from the target distribution (or can generate them), but not
necessarily know the target density.

• Computing KLD on base distribution (require computing �())

• Backward KLD:

• We can evaluate the target density but not necessarily sample from it.

• We can minimize loss even if we can only evaluate target density up to a
multiplicative normalizing constant C

• Computing KLD on target distribution (require computing �)

15

How to fit the model

• Flow-based model is - ����; >�

• Target distribution is – ��
∗���

• Models parameters - > = {@, A}

• Parameters of � − @

• Parameters of �� � − A

16

How to fit the model - forward KLD

You have samples from the target distribution �or can generate
them�, but not necessarily know the target density.

ℒ > = �GH ��
∗ � ∥ �� �; > =

 J ��
∗ � log

KL
∗ �

KL �; >

M

(M
=

17

How to fit the model - reverse KLD

we have the ability to evaluate the target density but not necessarily sample from it. In fact, we can minimize

L(θ) even if we can only evaluate target density up to a multiplicative normalizing constant C, since in that

case log C will be an additive constant in the above expression for L(θ). EXAMPLES

18

Constructing Flows – finite composition

• Composition of transformations

• Efficiently tractable Jacobian

19

• Transformation:

• NO
P = Q�NO; ℎO� and zT = Q()�NO

P; ℎO�
• Strictly monotonic function of NO (due to that invertible)

• Parametrized by conditioning ℎO
• Conditioning :

• ℎO = UO�NVO�
• Determines the parameters of transformation

• Does not need to be a bijection

• :WX conditioner can depend only NOV
• Consequences:

• autoregressive flows are universal approximator

Autoregressive flow
Definition

20

Autoregressive flows
Complexity

• Jacobian determiniet computation Y � - Lower triangle

• Forward pass � N easily parallelizable though fast.

• Inverse �() � slow

21

Autoregressive flows
Implementing transformation as an affine neural transform

• Shift and scale transformation:

Q NO; ℎO = ZONO + \O , ℎO = {ZO , \O }

• Pros

• Simplicity

• Fast to compute Jacobian determinient Y �

log
]^�_`a
NO = ∑ log |ZO|7

Oc)

• Analytical tractability

• Cons

• Expressivity is limited

22

Autoregressive flows
Implementing Transformer as affine neural transformer

Examples:

• NICE (Dinh et. al. 2015)

• Inverse Autoregressive Flow (Diedrik
et. al. 2016)

• Masked Autoregressiv Flow
(Papamakarios et al., 2017)

• Parallel Wavenet (Oord et. al. 2017)

• RealNVP (Dinh et al., 2017)

• GLOW (Kingma and Dhariwal, 2018)

• WAVE GLOW (Prenger et. al. 2018)

Results:

• Not state of the art but can achieve
“good enough” results for Real Time
applications

• Cannot stand to the results achieved
with traditional autoregressive
models:

• WaveGlow or ParallelWavenet vs
Wavenet

• Glow, RealNVP, IAF, MAF vs PixelRNN

23

Autoregressive flows
Implementing Transformer as Non-affine Neural Transformer

• Constructed using a conic combination or composition of
monotonically increasing activation functions such as:

• logistic sigmoid

• tanh

• leaky ReLu

• etc

• Conic combination: Q N = ∑ deQe NG
ec) , dℎ]f] de 3 0

• Composition: Q N = QG ∘ ⋯ ∘ τ)

24

Autoregressive flows
Implementing Transformer as Non-affine Neural Transformer

• Pros

• Can represent any monotonic function arbitrarily well, which follows directly
from the universal-approximation capabilities of multi-layer perceptrons

• Cons:

• In general they cannot be inverted analytically, and can be inverted only
iteratively e.g. using bijection

• Examples

• Neural Autoregressive Flows

• Flow++

25

Modeling power on toy dataset

Data Affine Non-Affine

26

Source: B-NAF (De Cao et. al.)

27

Autoregressive flows
Implementing Transformer as Integration Transformer

• Constructed on observation that integral of some positive function is a
monotonically increasing function

• Pros:
• Arbitrarly flexible

• Cons:
• Integral lacks analytical tractability. One possibility is to resort to a numerical

approximation.

• Examples:
• UMNN-MAF (Wehenkel and Louppe 2019)

• Sum-of-Squares Polynomial Flow (Jaini and Yu 2019)

28

Modeling power on toy dataset

29

Source: UMNN-MAF (Wehenkel and Louppe 2019)

Autoregressive flows
Implementing Transformer as Neural Spline

• Implement transformer as monotonic spline with K semgents
parametrized by neural network (for example using Steffens method).

30

Source: Cubic Spline Flow (Durkan et.

al. 2019)

Autoregressive flows
Implementing Transformer as Neural Spline

• Pros:

• Arbitrarly flexible with increese of numer of segments

• Deals with tradeoff between accuracy and computational cost of bijection
search

• Maintain exact analytical tractability

• Cons

• Personally cannot find

• Expamples:

• Neural Spline Flows (Durkan et. al. 2019)

• Cubic Spline Flows (Durkan et. al. 2019)

31

Modeling on toy dataset

32

Source: Neural importnace sampling (Muller et. al. 2019)

33

Autoregressive flows
Implementing Conditioner

• Conditioner can be any function of NOV

• Naive implementation would scale poorly with dimensionality � (on
average �/2 forward passes)

• This problem can be overpassed through sharing parameters across
the conditioners, or by combining the conditioners into a single net-
work

34

Autoregressive flows
Implementing Conditioner – Recurent autoregressive flow

• Share parameters across conditioners using recurrent neural network
(RNN).

• Pros:
• Allow for sharing parameters saving memorry

• Cons:
• Each state lO must be computed sequentially even though each ℎO can be computed

independently and in parallel from NOV.
• Recurrent computation involves O(D)

35

Autoregressive flows
Implementing Conditioner – masked autoregressive flow

• Feedforward neural network that takes N and outputs entire
sequence �ℎ), … , ℎ7� in one pass

• Constructed through taking any Neural Network and masking any
connections from NnO to ℎO

36
Source: WaveNet (Oord et. al. 2016) Source: MADE (Germain et al. 2015)

Autoregressive flows
Implementing Conditioner – masked autoregressive flow

• Pros:

• Efficient to evaluate

• Universal aproximators given large enough conditioner and flexible enough
transformer

• Cons:

• Not efficient to invert

• Examples:

• MAF

• IAF

• MintNet (Song et al. 2019)

37

Coupling flows

Implementing Conditioner – coupling layers

• Parameters �ℎ), … , ℎo� are constants, i.e. not a function of N

• Parameters �ℎop), … , ℎ7� are functions of Nqo only, i.e. they don’t
depend on Nro.

• Coupling layers and fully autoregressive flows are two extremes on a
spectrum of possible implementations

38

Coupling flows
Implementing Conditioner – coupling layers

• One of the most popular methods for implementing flow conditioners

• Coupling layers and fully autoregressive flows are two extremes on a
spectrum of possible implementations

• Is not known if universal universal approximation cappabilities can be
achieved with lower ammount of computations that with autorgressive
flow

• Pros:
• Faster computations for both � and �()

• Cons:
• Comes at the cost of reduced epxressivity
• Require permutations between layers

39

Other implementations of Normalizing Flows

• Linear Flows - find input ordering easier for modeling target
distribution

• Residual Flows - all input variables to affect all output variables

• Continiouse flows – Instead of having finite compositions time is
assumed to flow continiously for transformation

• Conditional Flows – we can use additional conditionings in
conditioner network.

40

Autoregressive flows
Relation to Autoregressive models

We can think of autoregressive flows as subsuming and further
extending autoregressive models for continuous variables.

• this view provides a framework for their composition, which opens up
an avenue for enhancing their flexibility

• It separates the model architecture from the source of randomness,
which gives us freedomin specifying the base distribution

• It allows us to compose autoregressive models with other types of
flows, potentiallynon-autoregressive ones.

41

Linear flows
Definition

• Autoregressive flows depend on the order of the input variables.

• Target transformation may be easy to learn for some input orderings
and hard to learn for others

• Permute the input variables between successive autoregressive
layers.

• A permutation of the input variables is itself an easily invertible trans-
formation, and its absolute Jacobian determinant is always 1

• A linear flow is essentially an invertible linear transformation of the
form:

42

Linear flows
Definition

• Pros:

• Coupling layers without linear flows are limited

• Allow to find input ordering easier for modeling target distribution

• Special case - permutation – used with success in many applications such as
RealNVP, Glow, Cubic Spline Flow

• Cons:

• Straightforward implementation dooes not guarantee to be inversible

• Finding Inverse of W and Jacobian Determiniet takes Y �s - some
approaches allow for respectively Y �1 and Y���

43

Residual flows
Definition

Defined as:

Residual transformations are not always invertible, but can be made
invertible if tu is constrained appropriately.

44

Residual flows
Contractive residual flows

• A residual transformation is guaranteed to be invertible if tu can be

made contractive with respect to some distance function

• If 0 < v < 1 and x: 67 → 67

45

Residual flows
Contractive residual flows

• Pros:

• allows all input variables to affect all output variables

• can be very flexible and have demonstrated good results in practice

• Cons:

• Exact density estimation is computionally expensive

• No general efficient procedurę for computing Jacobian

• Examples:

• Invertible-ResNet

46

Source: I-ResNet (Behrman 2019)

Residual flows
matrix determinant lemma

• Have Y��� Jacobian determinants, and can be made invertible by suitably
restricting their parameters

• No analytical way to compute invers

• It’s not clear how the flexibility of the flow can be increased other than by
increasing the number of transformations

• Used to approximate posteriors for variational autoencoders and rarely as
generative models in their own righ

• Examples:
• Planar flow
• Sylvester flow
• Radial flow

47

Practical considerations

• Compose as many transformations as memory and computation will
allow

• Use batch normalization between consecutive layers of flow:

• Allow for training deeper models, through better gradient flow

• Stabilize the training

• With small mini-batches this can be noisy and negatively impact the training
(Glow implements activation normalization instead)

• Use multi-scale architecture (skip-connections for flows)

• Less costly though allow for deeper models

• Help optimize through the whole depth of the flow

48

Constructing Flows – continiuse

transformation

• Let NW denote the flow’s state at time ^ (or ‘step’ ^, thinking in the
discrete setting). Time ^ is assumed to run continuously from ^{ to ^),
such that NW|

= � and NW0
= �.

• Continuous-time flow is constructed by parameterizing the time
derivative of NW with a neural networkg } with parameters }, yielding
the following ordinary differential equation(ODE)

49

Constructing Flows – continiuse

transformation

• To compute the transformation � = ����, we need to run the
dynamics forward in time by integrating

• Inverse transform is:

• Optimization is done through numerical ODE solvers

50

Constructing Flows – continiuse

transformation

• FFJORD

• PointFlow

51

Sources: FFJORD (Grathwohl 2019)

Comparison of different methods

52

Source: Normalizing Flows: An Introduction and Reviewof Current Methods (Kobyzev et al. 2019)

Comparison of different methods

53

Source: Normalizing Flows: An Introduction and Reviewof Current Methods (Kobyzev et al. 2019)

Conclusions

• High level overview with intuition behind normalizing flows

• State of the art architectures and their characteristics

54

55

Most important references

• https://arxiv.org/abs/1908.09257 - Normalizing Flows: An

Introduction and Review of Current Methods

• https://arxiv.org/abs/1910.13233 - Neural Density Estimation and

Likelihood-free Inference

• https://arxiv.org/abs/1912.02762 - Normalizing Flows for

Probabilistic Modeling and Inference

56

