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Advanced machine learning in action: identification of
intracranial hemorrhage on computed tomography scans of the
head with clinical workflow integration

Mohammad R. Arbabshirani', Brandon K. Fornwalt
Aalpen A. Patel'? and Gregory J. Moore'

2, Gino J. Mongelluzzo', Jonathan D. Suever'?, Brandon D. Geise',

Intracranial hemorrhage (ICH) requires prompt diagnosis to optimize patient outcomes. We hypothesized that machine learning
algorithms could automatically analyze computed tomography (CT) of the head, prioritize radiology worklists and reduce time to
diagnosis of ICH. 46,583 head CTs (~2 million images) acquired from 2007-2017 were collected from several facilities across
Geisinger. A deep convolutional neural network was trained on 37,074 studies and subsequently evaluated on 9499 unseen studies.
The predictive model was implemented prospectively for 3 months to re-prioritize “routine” head CT studies as “stat” on realtime
radiology worklists if an ICH was detected. Time to diagnosis was compared between the re-prioritized “stat” and “routine” studies.
A neuroradiologist blinded to the study reviewed false positive studies to determine whether the dictating radiologist overlooked
ICH. The model achieved an area under the ROC curve of 0.846 (0.837-0.856). During implementation, 94 of 347 “routine” studies
were re-prioritized to “stat”, and 60/94 had ICH identified by the radiologist. Five new cases of ICH were identified, and median time
to diagnosis was significantly reduced (p < 0.0001) from 512 to 19 min. In particular, one outpatient with vague symptoms on anti-
coagulation was found to have an ICH which was treated promptly with reversal of anticoagulation, resulting in a good clinical
outcome. Of the 34 false positives, the blinded over-reader identified four probable ICH cases overlooked in original interpretation.
In conclusion, an artificial intelligence algorithm can prioritize radiology worklists to reduce time to diagnosis of new outpatient ICH
by 96% and may also identify subtle ICH overlooked by radiologists. This demonstrates the positive impact of advanced machine

learning in radiology workflow optimization.
npj Digital Medicine (2018)1:9; doi:10.1038/s41746-017-0015-z

INTRODUCTION

Intracranial hemorrhage (ICH) is a critical condition accounting for
about 2 million strokes worldwide.! Hemorrhages can occur both
within the brain parenchyma (intra-axial) or within the cranial
vault but external to the brain parenchyma (extra-axial). Both
intra-axial and extra-axial hemorrhage have significant clinical
burden. For example, intra-axial hemorrhage affects approxi-
mately 40,000 to 67,000 patients per year in the United States®?
with a 30-day mortality rate of 47 percent.* Moreover, 46% of
survivors of subarachnoid hemorrhage (a type of extra-axial
hemorrhage) endure permanent cognitive impairment.>® Hospital
admissions of ICH have dramatically increased in the past decade
probably due to increased life expectancy and poor blood
pressure control.”® Importantly, early diagnosis of ICH is of critical
clinical importance since nearly half of the resulting mortality
occurs in the first 24h,° and earlier treatment likely improves
outcomes.'® Computed tomography (CT) of the head is the most
widely used tool for diagnosing acute ICH, and the timing of
diagnosis, therefore, depends on how quickly a head CT is both
completed and subsequently interpreted by a clinician.

The interpretation time of radiological studies is highly
dependent on the priority assigned to the exam by the ordering

physician (for example “stat” vs “routine”) and by patient status
(inpatient vs. outpatient). Stat studies are typically interpreted
within an hour (at our institution) while routine outpatient studies
can take much longer based on the available radiology workforce.
Therefore, detection of ICH in routine studies (especially those
imaged in an outpatient setting) may be significantly delayed. ICH
does occur in the outpatient setting, albeit with a lesser frequency
than the inpatient or emergency department setting. For example,
elderly outpatients on anticoagulation therapy experience higher
risk of ICH."" Importantly, initial symptoms may be vague,
prompting a non-emergent, routine head CT.

Automatic triage of imaging studies using computer algorithms
has the potential to detect ICH earlier, ultimately leading to
improved clinical outcomes. Such a quality improvement tool
could be used to automatically manage the priority for
interpretation of imaging studies with presumed ICH and help
optimize radiology workflow. Machine learning and computer
vision are among a suite of techniques for teaching computers to
learn and detect patterns.

In particular, deep learning (a class of machine learning
algorithms suitable for training large multi-layer neural networks)
has been leveraged for a variety of automated classification tasks
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such as natural language processing, speech recognition and
object detection.'? There has been growing interest in “augmen-
ted” diagnostic vision with machine learning recently in the
medical field."® For example, a recent paper showed that diabetic
retinopathy can be accurately detected from retinal photographs
using deep learning.'* Additional published applications include
detection and diagnosis of skin cancer,'® pulmonary nodules'®
and cerebral microhemorrhage.'” Despite these studies demon-
strating the promise of machine learning to positively impact the
field of diagnostic medicine and radiology, clinical implementa-
tion of deep learning thus far is rare.

The purpose of this study was twofold. The first goal was to
develop a predictive deep learning model capable of detecting
ICH based on a large clinical database of head CT studies. Second,
we aimed to implement and test the predictive model in real time
as a radiology workflow optimization tool. We hypothesized that
this implementation as a quality improvement tool would lead to
a significant reduction in the average interpretation time of head
CTs showing ICH without significantly adding to the burden of
“stat” studies on the radiology worklists. To our knowledge, no
study has reported using a large cross-sectional imaging database
and advanced computer vision techniques for detection of critical
radiological findings in a quality improvement setting. Moreover,
clinical implementation of an automatic deep learning based
radiology quality improvement tool and subsequent workflow
optimization has, to our knowledge, never been performed.

RESULTS

The fully 3-dimensional deep learning architecture developed and
used in this study to classify the presence or absence of ICH within
head CT studies (analyzed as a complete 3-dimensional study, not
as individual images) is illustrated in Fig. 1 and described in detail
in the methods. After training the algorithm on 37,084 head CT
studies, the receiver operating characteristic (ROC) curve was
generated using the 9499 unseen testing datasets (Fig. 2). The
area under the curve (AUC) of the model was 0.846 (95% Cl:
0.837-0.856) for predicting the presence of absence of ICH. A false
positive rate of 0.2 was chosen for the operating point (magenta
circle on Fig. 2), where the overall specificity and sensitivity were
0.800 (95% ClI: 0.790-0.809) and 0.730 (95% Cl: 0.713-0.748),
respectively. The algorithm detected a variety of ICH cases despite
the heterogeneity in the clinically-acquired data. Figure 3
illustrates examples of the correctly detected ICH cases (true
positives). Examples of false positives can be found in the
supplementary material (Figure S1).

Clinical implementation results

The clinical implementation phase utilized the algorithm to
reprioritize radiology worklists (Fig. 4). This portion of the study
ran from 6 January 2017 to 24 March 2017, during which time
347 “routine” head CT studies were processed using the algorithm
with an accuracy of 84% (Cl: 78-87%), sensitivity of 70%

(CI:58-78%) and specificity of 87% (Cl:82-91%). Of the 347 “rou-
tine” studies, 94 cases were upgraded to “stat” on the worklist
(26%) and, of these, 60 were dictated as having an ICH present by
the interpreting radiologist (resulting in a positive predictive value
of 60/94 = 64%). Importantly, of these 94 cases, five new ICH cases
from outpatients were detected (5%). The complete confusion
matrix is provided in the supplemental material (table S1). The
average processing time for running the ICH detection algorithm
on a given study was 2.3 sec. The studies prioritized as “stat” had a
median time to clinical interpretation of 19 min (IQR: 22 min),
which was significantly lower (p<0.0001) than the median
interpretation time for the “routine” studies (512 min, IQR: 1551
min). The clinical details of two selected cases are reviewed below.

Case #1. An 88-year-old female patient with atrial fibrillation on
coumadin presented to her physician with mental status changes
for 1 week which were initially attributed to alprazolam. This
continued despite withholding alprazolam and therefore out-
patient routine head CT was ordered. The deep learning algorithm
detected ICH and the study (representative image shown in Fig.
5a) was automatically reprioritized from routine to stat. As a result,
the study was interpreted within 39 min to have acute intracer-
ebral hemorrhage within the left anterior-medial temporal lobe
(uncus). The patient was admitted and anticoagulation reversed
with prothrombin complex concentrate and vitamin K, preventing
further enlargement of the hemorrhage. Repeat CT of the head 36
h later showed stable hematoma without expansion, and a head
CT 1 month later showed near complete resolution of the
hemorrhage. The early diagnosis (39 min) likely led to critical early
reversal of anticoagulation and stabilization of the hemorrhage
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Fig. 2 ROC curve of the ICH detection algorithm on the testing
dataset. The magenta circle illustrates the operating point. AUC of
the ROC is 0.846
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Fig. 3 Examples of true positive ICH cases detected by the algorithm. a Outpatient with right thalamic hemorrhage. b Outpatient with
subarachnoid hemorrhage in the left frontal convexity. ¢ Inpatient with acute intraventricular hemorrhage within the third ventricle. d
Outpatient with right basal ganglia/external capsular hemorrhage. e Inpatient with chronic subdural hemorrhage. f Outpatient with large left
frontoparietal intraparenchymal hemorrhage. g Inpatient with intraparenchymal hemorrhagic contusion in the right temporal lobe. h
Inpatient with large intraparenchymal hematoma. i Outpatient with bilateral subdural hemorrhages. j Outpatient with subdural hemorrhage
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Fig. 4 Clinical implementation of the ICH detection algorithm as a radiology workflow optimization tool
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Fig. 5 Representative head CT image slices associated with case #1
(@) and case #2 (b)

instead of worsening, potentially lethal expansion in the setting of
anticoagulation.

Case #2. A 76-year-old male who fell down a flight of stairs was
treated non-operatively for a right scapula fracture, transverse
process spinal fractures and a left flank hematoma. His initial head
CT showed no acute findings, and he was discharged home after
2 days. The patient then presented for outpatient follow-up
6 weeks later with continued dizziness and bifrontal headaches, at
which time a routine outpatient head CT was ordered. An acute/
subacute left subdural hematoma was noted, and the study was
automatically prioritized stat by the ICH detection algorithm. The
study was read in 8 min and confirmed to show acute subdural
hematoma (representative image shown in Fig. 5b). While the
patient was initially managed with close observation non-
operatively, he ultimately required emergent evacuation of acute
on chronic subdural hemorrhages 12 days later at which time he
had another head CT that was again identified by the algorithm as
showing ICH.

Neuroradiologist over-read results

Of the 34 presumed false positive studies from the clinical
implementation phase where the algorithm detected ICH but the
original dictating radiologist stated no hemorrhage, 4 of these
were subsequently identified as showing probable hemorrhage
with at least moderate confidence by the staff neuroradiologist
over-reading the studies in blinded fashion without knowledge of
the purpose of the study. Representative images and review of the
cases are provided in the supplementary document (Figures S2
and S3).

DISCUSSION

We have shown that deep neural networks trained on large
clinical imaging datasets can detect critical radiological conditions
such as ICH with high accuracy (AUC of 0.846). Importantly, the
proposed algorithm detected a variety of ICH cases from a highly
heterogeneous dataset acquired clinically over a decade, without
a priori information about the location of the hemorrhage and
without controlling for factors such as scanner type, patient
conditions or image acquisition parameters. The algorithm was
then implemented into a live clinical radiology workflow
optimization scenario where significant benefit on time to
diagnosis of ICH in outpatients was demonstrated. To our
knowledge, no other study has implemented a deep learning
algorithm into clinical radiology workflow.

While head CT scans are often acted on by neurosurgeons in
the acute setting concomitantly or even prior to radiologist
interpretation, the outpatient setting is typically managed by
family or internal medicine physicians who rely on a radiologist’s
interpretation prior to acting. Our algorithm was therefore
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designed to operate in the outpatient setting, and our results
demonstrated the clinical benefit of 96% faster diagnosis of 5 new
ICH cases out of 347 routine head CTs (1.5%). Thus, the benefit of
earlier diagnosis in the 1.5% of outpatients who may have an
unknown ICH far outweighs the essentially negligible added
burden of the algorithm on radiology worklist prioritization. Future
studies may be able to utilize this now established workflow to
also provide benefit in the inpatient or emergency setting,
perhaps by identifying cases most likely to need neurosurgical
intervention or by predicting appropriate intervals for follow-up
head CT required to monitor progression of ICH. It is also
important to note that these results were achieved within our
integrated health system which has 24-h radiology coverage. In an
outpatient radiology facility without 24-h radiology coverage,
automated workflow optimization based on ICH detection will
likely provide even more benefit.

Computer-aided diagnosis (CAD) has been an active area of
research in the past five decades.'® Starting with detection of
breast cancer on mammograms,19 CAD has been extended to
several other diseases such as lung cancer,?® colon cancer?' and
more recently several brain disorders such as Alzheimer's
disease.?? Despite all these efforts, only CAD for breast imaging
has been widely adopted in clinical practice. However, even the
effectiveness of that has been controversial with some studies
supporting the benefits®> and others questioning the utility.>*
Importantly, most clinical CAD systems are based on traditional
computer vision techniques and do not utilize deep learning.

Deep learning methodology has proven to be effective in
several domains, such as object detection, where it has out-
performed traditional techniques as well as humans in computer
vision competitions.?® In recent years, there has been increased
interest in deep learning based CAD.*® For example, recently it
was shown that accurate detection of diabetic retinopathy on
retinal photographs is possible using a deep learning frame-
work.'* Other applications of such frameworks include skin cancer
detection,’” pulmonary nodule detection on CT images'® and
cerebral microbleed detection on magnetic resonance images.'’
One of the main advantages of deep learning based CAD over
traditional CAD such as that used in mammography is that it
automatically learns and extracts hierarchical levels of abstraction
from raw images in a fully data-driven manner instead of using
hand-crafted features. Typically, CAD systems provide a “second
opinion” while the radiologist makes the final decision. In the
proposed framework, the deep learning based ICH detection
algorithm is working behind the scene and simply affects
radiology read times for studies with detected ICH, however,
future implementations could test its utility in other scenarios. For
example, providing algorithm results to radiologists in realtime
may have additional clinical benefit. This is supported by our data
showing that approximately 10% of the initially “false positive”
cases detected as having ICH by the algorithm but not by the
original interpreting radiologist were determined to have prob-
able ICH with at least moderate confidence during a blinded over-
read. Whether these subtle, overlooked hemorrhages will ulti-
mately prove to be clinically actionable remains a subject of future
work that will require a larger prospective study.

Despite the promising results, several limitations deserve
comment. First, radiological reports were used as the reference
to extract the label for each head CT, and the accuracy of this
diagnosis is unknown. The possible errors introduced may have
reduced the accuracy of the predictive model. The potential
remedy for this limitation would be large numbers of over-reads
by radiologists, possibly via crowd-sourcing.

In its current form, the algorithm does not specify the location
of the ICH which is detected. This would be a helpful feature to
assist the radiologist in efficient evaluation of the results,
particularly in cases where the radiologist does not see anything
yet the algorithm detects an abnormality. While CNNs are capable
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of extracting features relevant to the ICH detection task in a fully
automated manner, those features are not necessarily under-
standable to humans in their native form. Importantly, there has
been significant effort in this direction in recent years in the
computer vision community. Two promising approaches are
“Region-based Convolutional Neural Network” (R-CNN)*’ and
“Gradient-weighted Class Activation Mapping” (GRAD-CAM).*® R-
CNN combines region proposals with features computed by the
CNN while GRAD-CAM uses the gradients of the target in order to
produce a localization map highlighting the important regions of
the image that contributed the most to the prediction. However,
both R-CNN and GRAD-CAM currently work on 2D images and are
not necessarily straightforward to apply to the 3D images used in
the current study.

Other than a reduction in time to diagnosis, patient outcomes
were not formally evaluated in the current study. Indeed, a
prospective study to look at outcomes would likely need to
operate for several years to measure benefit. However, we did
provide detailed anecdotal evidence of clinical benefit in 2 out of
the 5 new cases of ICH that were identified on the outpatient head
CT list. Moreover, time to communication of critical findings such
as ICH is tracked by nearly every radiology department in the US,
and the algorithm showed clear benefits on this metric. Finally,
time to diagnosis is important to patients and their families no
matter the clinical outcome. This work therefore lays the
foundation for future, large prospective studies of patient
outcomes, perhaps after randomization to using or not using
the algorithm.

We fed the network approximately 37,000 three-dimensional 3D
head CT studies (each study included all 2D image slices from the
3D study). Given that we used 3D architecture, the presented
network was the largest that could fit within the memory of the
GPUs we used for this study. More complicated models may
increase the performance, however, would require parallelizing
the model across more GPUs, which we did not have access to for
the current study. Moreover, downsampling the images slightly to
256 x 256 x 24 was also required due to hardware limitations, and
future studies may be able to slightly improve performance by
using additional slices and larger (native) matrix sizes.

METHODS

Imaging dataset

46,583 non-contrast head CT studies from 31,256 unique adult patients
were collected retrospectively from our integrated healthcare system’s
picture archiving and communication system. None of these head CT
studies had been previously used for research or published, and they were
not taken from publically available databases. Studies were required to
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have an associated complete clinical dictation report along with at least 20
axial 2D slices. The Geisinger institutional review board reviewed the study
protocol and determined the work to be exempt. The head CT studies
were acquired using 17 scanners from 4 different manufacturers located in
facilities across our health system in Pennsylvania from 2007-2017. Each
study contained a variable number of 2D axial images (20-378) with slice
thicknesses ranging from 0.625-5.0 mm. Studies were not controlled for
scanning methodology or settings such as pixel spacing, scan time and
radiation dose. The dataset was randomly divided into training (37,084 stu-
dies) and testing (9499 studies) sets. During a 3-month implementation
phase, the algorithm processed 347 studies for automatic real-time
radiology worklist queue re-prioritization (called production data here-
after). The percentage of head CT studies derived from the inpatient,
outpatient and emergency settings was 20, 34, and 46%, respectively, for
both the training and testing datasets. Of the 37,084 studies in the training
set, 26.8% were labeled as having ICH. The characteristics of the dataset
are summarized in Table 1.

Labels

The binary label for each imaging study (negative or positive ICH) was
inferred from the official clinical radiology reports associated with the
study (generated by an interpreting attending staff radiologist) as detailed
in the supplementary material. Note that the labels were assigned in a
binary fashion to the entire head CT imaging study, not single images from
each head CT.

Preprocessing of imaging data

Each head CT study contained a variable number of 512 x 512 (pixel) axial
images mainly due to head size differences and variable slice thicknesses.
This was standardized by resampling each study to 24 image slices using a
standard cubic spline interpolation. Each slice was also resized to 256 x 256
using a cubic spline interpolation. These two steps helped each study to
achieve a uniform dimensionality of 24 x 256 x 256 regardless of the slice
thickness. In CT imaging, the amount of X-ray radiation absorbed by tissues
at each location in the body is mapped to Hounsfield units (HU). Water is
always set to 0 HU, while air is —1000HU, and bones have values between
several hundred to several thousand HU. To increase the contrast of the
images, a “blood window” was applied to each study (window level:40,
window width:80). Finally, to increase the training data and make it more
balanced, each study was augmented by applying random horizontal and
vertical translation (+0-20 pixels), rotation (+0-15°) and mirroring
(horizontal) to generate new augmented studies from each original study
in the training dataset (20 and 80 augmented studies from each negative
and positive study, respectively).

Algorithm development

In recent years, deep CNN have proven effective in a variety of vision tasks
such as object detection®’ and image segmentation.>® Deep learning is a
data-driven methodology for training large neural networks to map the
input data (in this case, head CT images) to the desired outputs (in this

Patient Type

Study Critical Level Routine and Stat

Table 1. Baseline characteristics of the data set

Training Testing Production
Number of radiology facilities 13 13 13
Number of unique individuals 24,882 6,374 329
Number of studies 37,084 9,499 347
Number of 2D images 1,624,068 331,092 12,532
Collection Period 2007-2017 2007-2017 01/06/2017-03/24/2017
Slice thickness range (mm) 0.625-5
Number of slices per study (range) 20-378
2D image resolution (pixel) 512x512
Age, mean (SD) years 58.89 (19.36) 58.87 (19.37) 61.36 (20.11)
Gender (% female) 47.02 % 46.98 % 45.90 %

Outpatient, Inpatient and Emergency

Outpatient, Inpatient and Emergency Outpatient and Inpatient

Routine and Stat Routine

Published in partnership with the Scripps Translational Science Institute
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case, negative or positive ICH) through a nonlinear mathematical function.
Training such networks requires large amounts of imaging data for which
the ground truth labels are known. By feeding the pixel intensities of each
image and the associated label into the deep learning network during the
training phase, network parameters change so that more accurate
prediction can be made by reducing the error (or loss) resulting from
comparing the generated output to the ground truth labels. This process is
repeated many times for each imaging study until the network is trained. A
trained network should be able to make the desired prediction on unseen
“test” data (and not just on the data it was trained on).

The architecture we used in this study is illustrated in Fig. 1. This
architecture has five convolutional layers and two fully connected layers
(aside from the max pooling and normalization layers). The convolutional
network was initialized randomly from a normal distribution centered at
zero. Stochastic gradient descent was used to train the proposed network.
The whole dataset was randomly divided into three parts for training
(~75%), cross validation (~5%) and testing (~20%). The performance of the
algorithm was measured using the AUC. After every epoch training phase,
the AUC was measured on the cross validation dataset and the network
parameters (weights of the model) were saved. The algorithm was trained
until near zero loss was obtained on the training dataset (overtraining). The
parameters at the point corresponding to the highest AUC on the cross
validation dataset were chosen for the final trained algorithm. The
generalization performance of the network was measured using the
unseen testing dataset. To improve the accuracy and robustness of the
algorithm, an ensemble of four networks were trained on the same
dataset. The final prediction was made by thresholding the average over
the predictions of the ensemble. We used the Caffe deep learning
package®' to train our model.

Clinical implementation
The algorithm was implemented as a quality improvement tool for
radiology interpretation workflow optimization. At our institution, similar
to most institutions, all radiological exams are either ordered as “stat” or
“routine”. All patients in the emergency department setting are designated
“stat” by default. All other inpatient or outpatient studies are designated as
“stat” or “routine” by the ordering provider in the electronic medical record
system. This decision is most often based on the clinical status of the
patient and pretest probability of a critical finding; both of which are
usually determined by the referring physician. The highest critical level is
called “stat,” and exams with this status are prioritized in the radiology
worklist queue. The reading list is sorted by a ruled-based engine with the
stat exams on the top, sorted by the time they were performed.
Radiologists interpret the exams starting from the top of the reading list.
To implement the algorithm, a data pipeline was built to transfer head
CT studies (in near real time) for every routine non-contrast head CT study
across the entire health system to the computational server containing the
trained algorithm. The algorithm then processed the exam and generated
a binary output (negative or positive ICH). If the results were positive, the
priority of the study was upgraded to “stat” and the reading list was
updated in real-time. If the results were negative, the priority of the study
was not changed. The interpreting radiologists were not aware of the re-
prioritization process. Figure 4 illustrates the clinical implementation of the
ICH detection algorithm at our institution.

Neuroradiologist over-read

To determine whether the algorithm correctly identified any subtle ICH
which were potentially not seen by the original dictating radiologist, an
attending staff neuroradiologist blinded to the study reviewed all false
positive studies (from the production dataset) and was asked to state
whether there was or was not ICH present. This neuroradiologist was
allowed to examine both prior and future studies in blinded fashion, and
was not able to see the clinical history or dictated reports in order to make
this determination.

Statistical analysis

The 95% confidence intervals for sensitivity and specificity of the algorithm
at the operating point were computed using exact binomial proportion
confidence intervals.>®> The 95% confidence interval of the AUC was
calculated based on the Delong method which is asymptotically exact.>
The p-value for comparing median read-times was calculated empirically
via permutation test repeated one million times.
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Data availability

The datasets generated for the current study are available on reasonable
request by contacting the corresponding author. The Caffe deep learning
package is open source’'
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