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With an estimated 160,000 deaths in 2018, lung cancer is 
the most common cause of cancer death in the United States1. 
Lung cancer screening using low-dose computed tomography 
has been shown to reduce mortality by 20–43% and is now 
included in US screening guidelines1–6. Existing challenges 
include inter-grader variability and high false-positive and 
false-negative rates7–10. We propose a deep learning algorithm 
that uses a patient’s current and prior computed tomography 
volumes to predict the risk of lung cancer. Our model achieves 
a state-of-the-art performance (94.4% area under the curve) 
on 6,716 National Lung Cancer Screening Trial cases, and 
performs similarly on an independent clinical validation set 
of 1,139 cases. We conducted two reader studies. When prior 
computed tomography imaging was not available, our model 
outperformed all six radiologists with absolute reductions of 
11% in false positives and 5% in false negatives. Where prior 
computed tomography imaging was available, the model per-
formance was on-par with the same radiologists. This creates 
an opportunity to optimize the screening process via com-
puter assistance and automation. While the vast majority of 
patients remain unscreened, we show the potential for deep 
learning models to increase the accuracy, consistency and 
adoption of lung cancer screening worldwide.

In 2013, the United States Preventive Services Task Force rec-
ommended low-dose computed tomography (LDCT) lung cancer 
screening in high-risk populations based on reported improved 
mortality in the National Lung Cancer Screening Trial (NLST)2–5. 
In 2014, the American College of Radiology published the Lung-
RADS guidelines for LDCT lung cancer screening, to standardize 
image interpretation by radiologists and dictate management rec-
ommendations1,6. Evaluation is based on a variety of image find-
ings, but primarily nodule size, density and growth6. At screening 
sites, Lung-RADS and other models such as PanCan are used to 
determine malignancy risk ratings that drive recommendations for 
clinical management11,12. Improving the sensitivity and specificity 
of lung cancer screening is imperative because of the high clinical 
and financial costs of missed diagnosis, late diagnosis and unneces-
sary biopsy procedures resulting from false negatives and false posi-
tives5,13–17. Despite improved consistency, persistent inter-grader 
variability and incomplete characterization of comprehensive 
imaging findings remain as limitations7–10 of Lung-RADS. These 

limitations suggest opportunities for more sophisticated systems 
to improve performance and inter-reader consistency18,19. Deep 
learning approaches offer the exciting potential to automate more 
complex image analysis, detect subtle holistic imaging findings and 
unify methodologies for image evaluation20.

A variety of software devices have been approved by the 
Food and Drug Administration (FDA) with the goal of address-
ing workflow efficiency and performance through augmented 
detection of lung nodules on lung computed tomography (CT)21. 
Clinical research has primarily focused on either nodule detec-
tion or diagnostic support for lesions manually selected by imag-
ing experts22–27. Nodule detection systems were engineered with 
the goal of improving radiologist sensitivity in identifying nod-
ules while minimizing costs to specificity, thereby falling into the 
category of computer-aided detection (CADe)28. This approach 
highlights small nodules, leaving malignancy risk evaluation and 
clinical decision making to the clinician. Diagnostic support for 
pre-identified lesions is included in computer-aided diagnosis 
(CADx) platforms, which are primarily aimed at improving speci-
ficity. CADx has gained greater interest and even first regulatory 
approvals in other areas of radiology, though not in lung cancer at 
the time of manuscript preparation29.

To move beyond the limitations of prior CADe and CADx 
approaches, we aimed to build an end-to-end approach perform-
ing both localization and lung cancer risk categorization tasks using 
the input CT data alone. More specifically, we were interested in 
replicating a more complete part of a radiologist’s workflow, includ-
ing full assessment of LDCT volume, focus on regions of concern, 
comparison to prior imaging when available and calibration against 
biopsy-confirmed outcomes.

Another important high-level decision in our approach was to 
learn features using deep convolutional neural networks (CNN), 
rather than using hand-engineered features such as texture fea-
tures or specific Hounsfield unit values. We chose to learn features 
because this approach has repeatedly been shown superior to hand-
engineered features in many open computer vision competitions in 
the past five years30,31, including the Kaggle 2017 Data Science Bowl 
which used NLST data32.

There were three key components in our new approach (Fig. 1). 
First, we constructed a three-dimensional (3D) CNN model that 
performs end-to-end analysis of whole-CT volumes, using LDCT 
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volumes with pathology-confirmed cancer as training data (the 
‘full-volume model’).

Second, we trained a CNN region-of-interest (ROI) detection 
model to detect 3D cancer candidate regions in the CT volume (the 
‘cancer ROI detection model’). We collected additional bounding 
box labels to train this model.

Third, we developed a CNN cancer risk prediction model that 
operates on outputs from both the cancer ROI detection model 
and full-volume model. This can also incorporate regions from a 
patient’s previous scans, which is accomplished by assessing regions 
in prior scans corresponding to the cancer candidate regions in the 
current scan, and then assigning a case-level malignancy score (we 
use the term ‘case’ to refer to a single patient visit, which could con-
tain multiple CT volumes). This component was also trained on 
case-level, pathology-confirmed cancer labels (see Methods, Model 
development and training).

To complete this study, multiple datasets were acquired and vari-
ous clinical evaluations were performed, as follows.

A deep learning model for analysis of malignancy risk in lung 
cancer screening CTs was developed from a NLST dataset consist-
ing of 42,290 CT cases from 14,851 patients, 578 of whom devel-
oped biopsy-confirmed cancer within the 1-year follow-up period. 
This represents the entire publicly available dataset provided by 
the National Institutes of Health (there were 26,722 patients in 
NLST). Details of how this dataset was selected from the entire 
NLST screening arm and the inclusion/exclusion criteria are given 
in Extended Data Fig. 1. Patients were randomly assigned into one 
of three sets: a training set (70%), a tuning set (15%) and a test set 
(15%). All CT scan volumes from each patient were then placed into 
the corresponding set based on this patient assignment. An individ-
ual volume was considered cancer-positive if the result of a biopsy 
or surgical resection was positive during the screening study year, 
and considered cancer-negative if the patient was cancer-free in the 
1-year follow-up screen. Supplementary Tables 1, 2 and 3 contain 
information on demographics and cancer staging, CT model manu-
facturer and nodule characteristics for all NLST subsets.

On the test dataset, for 6,716 cases (86 cancer-positives) the 
model achieved an area under the receiver operating characteris-
tic of 94.4% (95% confidence interval, 91.1–97.3) (see Methods, 
Statistical analysis). For comparison with radiologists, we then 
thresholded the model’s predictions at three different cutoffs to 
produce four different lung malignancy scores (LUMAS). These 
thresholds were chosen so that LUMAS scores corresponded with 

the probability of malignancy in Lung-RADS buckets 1/2, 3+, 4A+ 
and 4B/X on the tuning set33 (see Methods, Operating point selec-
tion, for more detail on model score thresholding for LUMAS). 
Buckets 1 and 2 were combined, as they have the same management 
recommendation: referral to continued annual screening.

We conducted a two-part retrospective reader study with six US 
board-certified radiologists (average of 8 years clinical experience, 
range 4–20 years). In the first part, the radiologists graded a sin-
gle-screening CT volume. Readers were given access to associated 
patient demographics and clinical history, while the deep learning 
model did not have access to this information. Additionally, while 
the volumes were resampled for the model, the readers assessed 
the full-resolution original CT cases. Neither the radiologists nor 
the model had access to previous screening CT volumes from the  
patient (see Methods, Reader studies). Radiologists reviewed a subset  
of the test dataset consisting of 507 patients (83 cancer-positives). 
On this subset of the test set, the model’s area under the curve 
(AUC) was 95.9 (95% confidence interval, 92.8–98.1). This AUC, 
and the sensitivity/specificity for LUMAS and radiologists, are pre-
sented in Fig. 2a,b. The performance of all six radiologists trended 
at or below the model’s receiver operating curve (Fig. 2b).

We compared the model to the average reader performance by 
measuring the sensitivity and specificity for each LUMAS score 
and its corresponding Lung-RADS risk bucket (see Methods, 
Reader studies). The model achieved significantly better sensitivity 
(P < 0.05 for all three thresholds) and better specificity (P < 0.05 for 
two of three thresholds) than the average radiologist (Fig. 2c,d). For 
instance, comparison of the operating point of LUMAS 3+ to Lung-
RADS 3+ yielded a statistically significant specificity boost of 11.6% 
(95% confidence interval, 7.8–15.1) and a sensitivity boost of 5.2% 
(95% confidence interval, 0.38–9.9).

We present an alternative methodology for comparison in 
Supplementary Table 4a,b where, rather than using LUMAS, we set 
the model sensitivity to match the average reader, compared speci-
ficity and then matched specificity to compare sensitivity.

Extended Data Fig. 2 shows the same analysis presented in this 
section, except that the results have been reweighted to take into 
account the sampling from the total of 26,722 patients in the NLST 
screening arm.

In the second part, CT volumes from both the current and  
previous year were available to the model and the same six  
radiologists. Comparison with previous scans to assess inter-
val growth is an important component of Lung-RADS34. Readers  
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Fig. 1 | Overall modeling framework. For each patient, the model uses a primary LDCT volume and, if available, a prior LDCT volume as input. The model 
then analyzes suspicious and volumetric ROIs as well as the whole-LDCT volume and outputs an overall malignancy prediction for the case, a risk bucket 
score (LUMAS) and localization for predicted cancerous nodules.
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graded 308 volumes from the first reader study that were not from 
the initial baseline NLST prevalence screening; all of the cases in 
this subset had prior scans available (see Methods, Reader study—
lung cancer screening using current and prior CT volume). On 
this subset, the model’s AUC was 92.6% (95% confidence inter-
val, 86.5–97.3). Notably, both the reader and model performance 

dropped relative to the first part of the reader study as a result 
of dropping the CTs from the baseline year. We performed the 
same comparison as in the previous reader study (Fig. 3). LUMAS 
showed statistically significant improved specificity for the 4A+ 
bucket, and otherwise matched the average reader sensitivity and 
specificity (Fig. 3c,d).
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Fig. 2 | Results from the reader study—lung cancer screening on a single CT volume. a–e, Performance of radiologists and model in predicting malignancy 
using single screening CT volumes. Model performance shown in the AUC and summary tables is based on case-level malignancy score. LUMAS buckets 
refers to operating points selected to match the predicted probability of cancer for Lung-RADS 3+, 4A+ and 4B/X. a, Performance of model (blue line) 
versus average radiologist for various Lung-RADS categories (crosses) using a single CT volume. The length of the crosses represents the confidence 
Intervals (CIs). The area highlighted in blue is magnified in b to show the performance of each of the six radiologists at various Lung-RADS risk buckets. 
c, Sensitivity comparison between model and average radiologist. d, Specificity comparison between model and average radiologist. Both sensitivity and 
specificity analyses were conducted with n = 507 volumes from 507 patients, with P values computed using a two-sided permutation test with 10,000 
random resamplings of the data. e, Hit rate localization analysis used to measure how often the model correctly localized a cancerous lesion.
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We present an alternative methodology for comparison in 
Supplementary Table 4c,d where, rather than using LUMAS, we set 
the model sensitivity to match the average reader, compared speci-
ficity and then matched specificity to compare sensitivity.

Extended Data Fig. 3 shows the same analysis presented in this sec-
tion, except the results have been reweighted to take into account the 
sampling from the total 26,722 patients in the NLST screening arm.

Application of the model to all 6,716 cases (86 cancer-positives) 
in the held-out NLST test set yielded an overall AUC of 94.4% (95% 

confidence interval, 91.1–97.3). A total of 2,302 cases from the 
baseline year did not have prior volumes available, but in all other 
cases readers and the model had access to both current and prior 
year volumes. We followed an earlier algorithmic methodology33 
to estimate Lung-RADS performance from NLST nodule annota-
tions. Because the nodule annotations in NLST do not contain all 
of the findings needed by the Lung-RADS guidelines (see Methods, 
Retrospective application of model to NLST), for comparison of the 
model to this Lung-RADS estimate we chose a different operating 
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Fig. 3 | Results from the reader study—lung cancer screening using current and prior CT volume. a–e, Model performance in the AUC curve and 
summary tables is based on case-level malignancy score. The term ‘LUMAS buckets’ refers to operating points selected to represent sensitivity/specificity 
at the 3+, 4A+ and 4B/X thresholds. a, Performance of model (blue line) versus average radiologist at various Lung-RADS categories (crosses) using a CT 
volume and a prior CT volume per patient. The length of the crosses represents the 95% confidence interval. The area highlighted in blue is magnified in 
b to show the performance of each of the six radiologists at various Lung-RADS categories in this reader study. c, Sensitivity comparison between model 
and average radiologist. d, Specificity comparison between model and average radiologist. Both sensitivity and specificity analyses were conducted with 
n = 308 volumes from 308 patients, with P values computed using a two-sided permutation test with 10,000 random resamplings of the data. e, Hit rate 
localization analysis to measure how often the model correctly localized a cancerous lesion.
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point. For the 1-year cancer outcomes data, we found a boost in  
specificity (5.0%; 95% confidence interval, 4.2–5.7). We also  
analyzed the model’s performance for a longer-term endpoint, can-
cer within 2 years, resulting in an AUC of 87.3% (95% confidence 
interval, 83.2–90.9). For this endpoint, the model yielded improve-
ments in both sensitivity (9.5%; 95% confidence interval, 2.5–16.4) 
and specificity (5.1%; 95% confidence interval, 4.4–5.9) relative to 
retrospective-Lung-RADS.

Extended Data Fig. 4 shows the same analysis presented in this 
section, except that the results have been reweighted to take into 
account the sampling from the total 26,722 patients in the NLST 
screening arm.

Under insitutional review board (IRB) approval, we evaluated the 
model on an additional independent, fully de-identified screening 
dataset from a US academic medical center, resulting in an AUC of 
95.5% (95% confidence interval, 88.0–98.4) (Fig. 4b and Extended 
Data Fig.  5a). This dataset contained 1,739 cases (27 cancer-posi-
tives) and was used to evaluate model performance for biopsy and/
or surgically confirmed lung cancers. The model was not trained or 
tuned using this dataset. Images were not submitted for re-inter-
pretation by radiologists (see Methods, Development and valida-
tion datasets, for more details on the dataset). We also evaluated the 
sensitivity and specificity of LUMAS (Fig. 4b). For LUMAS 3+, we 
found a sensitivity of 81.5% (95% confidence interval, 66.7–95.0) 
and a specificity of 89.3% (95% confidence interval, 87.5–91.2).

We performed a localization analysis to measure how often a 
correct cancer diagnosis was linked with a correct localization. A 
bounding box was produced by the model for the top two candi-
date lesions by malignancy risk. For the localization ground truth, 
each of 79 scans was labeled by two radiologists from a pool of nine. 
Every scan was derived from a cancer-positive patient in NLST. The 
radiologists were given the location and staging information from 
the pathology report, as well as all CT volumes from the patient’s 
data. They were then instructed to label all malignancies with a 
bounding box. The highest-ranked bounding box overlapped with 
a malignancy in the scan labeled by our radiologists in all but one 
case (Figs. 2e and 3e), for a Hit@1 rate of 98%. The Hit@2 rate was 
100% (see Methods, Localization analysis, for more details on the 
Hit metric). These findings were consistent regardless of the specific 
LUMAS score used to define a true-positive. For a more detailed 
analysis of the extent of overlap, see Extended Data Fig. 5b.

Given the perceived ‘black box’ nature of deep learning, an 
important step in evaluating clinical performance is a deeper assess-
ment of the modeling results. We measured performance on many 
data subsets to show that the model’s overall performance improve-
ments were not obscuring poor performance in clinically relevant 
subsets. Additionally, we attempted to understand where the 
model’s performance improvements were greatest. The full list of 
subsets and metrics can be seen in the Supplementary Information 
(see Supplementary Tables 5 and 6). The model was not statistically 
inferior relative to the average reader for any metric, subset or risk 
bucket in either part of the reader study.

Some of the subsets we analyzed were based on a patient’s can-
cer stage when diagnosed according to NLST pathology data. In the 
first part of the reader study (see Reader study—lung cancer screen-
ing on a single CT volume), LUMAS 4B/X versus the average reader 
Lung-RADS 4B/X showed an absolute improvement in sensitivity of 
24.4% (95% confidence interval, 10.4–37.2) for early-stage cancers.

Another group of subsets were based on NLST nodule size anno-
tations. On the subset with nodules 8–15 mm, we saw an absolute 
improvement in sensitivity of 42.4% (95% confidence interval, 24.7–
58.0) in LUMAS 4B/X versus the average reader Lung-RADS 4B/X. 
An example case of this type is illustrated in Extended Data Fig. 6d, 
annotated by one radiologist as containing a 12-mm nodule.

Further exploration of model results was completed by two 
additional radiologists (with 10 and 21 years of clinical experience) 

reviewing the 140 cases of disagreement between the radiologist 
consensus and the model from the first part of the reader study 
(without priors volumes) to evaluate possible causes of disparities 
(see Supplementary Information, Subjective analysis). The radiolo-
gists observed scarring in 22% of the model–reader disagreements 
and, in 57% of these cases, LUMAS appropriately assigned a lower 
risk bucket than the readers. This downgrading of scarring accounts 
for some of the specificity improvements in the model. An example 
where LUMAS downgraded risk for a cancer-negative case with 
scarring is shown in Extended Data Fig.  6c (See Supplementary 
Information, Subjective analysis, for more details of the analysis).

Further analysis of the model’s results included examining attri-
bution regions computed with integrated gradients35, using three 
radiologists with an average of 23 years’ clinical experience (range 
10–38 years). Positive and negative classification regions were 
examined by three radiologists on a subset of examples from the test 
set. The attribution regions indicated that the model primarily con-
centrated within and on the edges of the nodule, although in some 
cases also on the vasculature in the parenchyma (see Supplementary 
Information, Subjective analysis; Extended Data Fig. 7 and example 
model false positives in Extended Data Fig. 8).

In summary, we used advanced deep learning techniques to 
train models with state-of-the-art-performance by leveraging full 
3D LDCT volumes, pathology-confirmed case results and prior 
volumes. These models, if clinically validated, could aid clinicians 
in evaluating lung cancer screening exams.

Our end-to-end priors approach generates case-level malignancy 
risk predictions as well as localization information for LDCT lung 
screening volumes. The strong performance of the model at the 
case level has important potential clinical relevance. The observed 
increase in specificity could translate to fewer unnecessary follow-
up procedures. Increased sensitivity in cases without priors could 
translate to fewer missed cancers in clinical practice, especially as 
more patients begin screening. For patients with prior imaging 
exams, the performance of the deep learning model could enable 
gains in workflow efficiency and consistency as assessment of prior 
imaging is already a key component of a specialist’s workflow36. 
Given that LDCT screening is in the relatively early phases of adop-
tion, the potential for considerable improvement in patient care 
in the coming years is substantial. The model’s localization directs 
follow-up for specific lesion(s) of greatest concern. These predic-
tions are critical for patients proceeding for further work-up and 
treatment, including diagnostic CT, positron emission tomography 
(PET)/CT or biopsy.

Malignancy risk prediction allows for the possibility of aug-
menting existing, manually created interpretation guidelines such 
as Lung-RADS, which are limited to subjective clustering and 
assessment to approximate cancer risk. Numerous investigations 
have evaluated CADx applications built to assist radiologists in clas-
sification of suspected lesions previously detected and segmented 
by radiologists18. These prior CADx studies typically report only a 
lesion-level classification performance, which is not comparable to 
this work. In contrast, the model presented performs human-inde-
pendent detection and classification on full volumes. Past non-peer-
reviewed efforts that have attempted direct, automated malignancy 
prediction from full volumes using deep learning methods reported 
AUCs as high as 0.88 (ref. 37). However, these models were primarily 
trained and tested on smaller portions of the NLST dataset, did not 
evaluate the use of priors and did not report localization metrics32,37. 
We hypothesize that taking into account a larger context in our can-
cer risk prediction model (larger ROIs around candidate regions, 
whole-3D volume assessment and priors) and training on a larger 
portion of NLST led to superior performance.

While we did note a performance decrease in the with-priors 
subset, we also found a corresponding drop in performance for our 
readers. This decrease may be because patients with easy-to-spot 
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cancers are diagnosed and dropped from the study in the baseline 
year, leaving only more subtle cancer cases.

We propose a LUMAS system in this paper, but the underly-
ing techniques allow for broader exploration of other risk strati-
fication methods. Incorporating these new methods into CAD 
systems could also address the issues of inter-grader variability in 
lung cancer assessment, a pattern seen in both our reader study (see 
Supplementary Table 7) and prior publications38,39.

Explainability of deep learning models is still at an early stage. 
To begin to explore how the model evaluates risk of malignancy, 
we asked our clinicians to analyze a subset of cases subjectively. 
We hypothesize that there are advantages to the model’s more con-
sistent visualization of morphological features, such as scars and 
nodules, in 3D. Additionally, the model was not bound by the size 
guidelines in Lung-RADS, allowing for new risk categorization. We 
found cases where the model appeared to use features outside of the 
main nodule, such as the vasculature and parenchyma surrounding 
the nodule (see Supplementary Information, Subjective analysis). 
However, we do not know whether the model incorporates other 
abnormalities such as background emphysema in its predictions. 
Further examination using model attribution techniques may allow 
radiologists to take advantage of the same visual features used by the 
model to assess malignancy.

Our study did have some important limitations. While our 
radiologist-comparison studies were larger than in prior published 
work32, they were still limited to retrospective data from the NLST 
dataset. Although clinical comparison metrics were limited to a 
small number of general (not thoracic) radiologists, lung cancer 
screening is commonly performed by general radiologists40.

Another limitation resulting from initial lung cancer screening 
studies is the relative lack of cancer outcomes information avail-
able. In spite of this, our multi-stage modeling approach was able 
to leverage the natural distribution of data from the screening pop-
ulation using only 398 cancer-positives for training. We were also  

encouraged by the indicators of generalizability of our model to an  
independent dataset from another patient population. As we used 
only two datasets during testing, there is a limit to the conclusions 
that can be drawn about generalizability. However, the NLST test set  
we used represents 33 different test sites across 21 different manu-
facturer and model combinations. In addition, our academic 
medical center test set is derived from 1,039 cases, all in the years  
post-NLST. Further study will require testing and tuning against  
an even broader variability of screening data parameters to ensure 
generalizability.

Lastly, although we presented a methodology for choosing oper-
ating points for the model, this was primarily for the purposes of 
comparing reader and model performance. It is important to stress 
that the selection of operating points for use in clinical practice 
remains an ongoing area of research, potentially involving an analy-
sis of costs and outcomes to properly trade off between sensitivity 
and specificity.

More robust retrospective and prospective studies will be required 
to ensure clinical applicability as screening programs continue to 
scale. In future studies we aim to explore different approaches in 
presenting radiologists with model output assessments, including 
malignancy risk calculations and localization. Correlating the per-
formance improvements with documented improved clinical out-
comes and health system costs will also be required to determine 
potential impact. Another opportunity would be to apply similar 
modeling techniques to routine diagnostic CT, aiding in the detec-
tion and management of incidental pulmonary nodules.

In addition to its application to lung cancer screening, the deep 
learning techniques applied in this study have considerable rele-
vance to other types of 3D imaging data. For instance, this approach 
holds promise for magnetic resonance imaging, PET or other types 
of volumetric or multi-view problem research. Our research also 
has applications in workflows involving comparison with a patient’s 
prior imaging.
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Lastly, the early stage of lung cancer screening adoption led to a 
relative scarcity of quality ground truth data for training. While this 
presented a challenge during the research process, it demonstrated 
that it is possible for deep learning to achieve radiologist-level per-
formance with a smaller number of positive examples. As data scar-
city is a common problem in medical deep learning research, we 
hope these methods will translate to new opportunities for explora-
tion, especially in rare diseases.

In conclusion, these results represent a step toward automated 
image evaluation via lung cancer risk malignancy estimation 
through deep learning. We believe this research could supple-
ment future approaches to lung cancer screening as well as support 
assisted- or second-read workflows. In addition, we believe the 
general approach employed in our work, mainly outcomes-based 
training, full volume techniques and directly comparable clinical 
performance evaluation, may lay additional groundwork toward 
deep learning medical applications.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41591-019-0447-x.
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Methods
Development and validation datasets. We used data from the NLST study, 
consisting of 42,290 CT cases from 14,851 patients, 638 of whom developed biopsy-
confirmed cancer within 1 year of a LDCT screening (see Extended Data Fig. 1 for 
more details on NLST dataset selection)41. Patients were randomly assigned to a 
training set (70%), a tuning set (15%) or a test set (15%). Because not all negative 
cases from NLST have been made publicly available, the training, tuning and 
test sets had cancer percentages of 3.9, 4.5 and 3.7, respectively (slightly higher 
than the 1–2% range reported for NLST in general and in real-world practice). 
Supplementary Tables 1, 2 and 3 describe demographics, scanner information 
and nodule and cancer characteristics for relevant subsets of this dataset. All 
participants enrolling in NLST signed an informed consent developed and 
approved by the screening centers’ IRBs, the National Cancer Institute (NCI) IRB 
and the Westat IRB. Additional details regarding cases in the dataset are available 
through the National Institutes of Health Cancer Data Access System. Briefly, 
LDCTs were collected from multiple institutions, with slice spacing varying from 
1.25 to 5 mm and scanner vendors varying by site. We filtered out the 5-mm scans 
to better represent the slice spacing of a typical modern screening protocol42, 
and the largest remaining slice spacing was 2.5 mm. A diagnosis of lung cancer 
established by biopsy at any time during the same year as a screening case counted 
as a ground truth true-positive case. This included cases identified as incidental 
cancers diagnosed during the same screening year as an initially negative screening 
exam. An exam was considered negative if the patient proved cancer-free on 
1-year follow-up; patients in the trial had multi-year follow-up. Patients had up to 
3 years of screening, all via LDCT and, in nearly all cases, only one visit occurred 
per year with exceptions made for patients with inadequate imaging or interval 
development of symptoms concerning for cancer. In cases where prior imaging was 
used for testing and development purposes, the screening exam from the preceding 
year was selected. As screening read data from NLST were gathered once per year 
for each patient, it was important also to evaluate the model once per year for each 
patient for our tuning and testing sets. We chose the latest case per screening year, 
since this was the most likely case to have generated the screening read because 
patients typically were asked to return only if imaging was inadequate. Within 
each case we used the best available reconstruction kernel (See Supplementary 
Information, Kernel selection) with the highest number of slices.

An independent dataset from an academic medical center was used to further 
validate the model’s performance. This dataset consisted of 1,139 cases from 
907 patients collected as part of a screening program (see Extended Data Fig. 9 for 
exclusion criteria and further details); 209 of the patients and 232 of the cases had 
priors available. These data were not used in the training or tuning of the model. 
The data were a fully de-identified lung cancer screening CT dataset. The ground 
truth for cancer on this dataset was defined based on lung cancer International 
Classification of Disease codes with biopsy or surgical confirmation of cancer 
via manual review of the pathology note. For cancer-negatives, patients had a 
cancer-free follow-up examination at least 1 year after the initial screening exam. 
Slice spacing for CTs in this dataset varied from 1.25 to 3.0 mm, with the majority 
(84%) being 3.0 mm. Notably, our training set in NLST had a maximum spacing of 
2.5 mm, suggesting that our model generalized to different scanning parameters.

Model development and training. Overall, the model is trained to take the entire 
CT volume and automatically produce a score predicting whether the patient 
received a cancer diagnosis in the same study year. First, for clarity it is important 
to define the following terms.

Volume always refers to the full CT volume (that is, the entire set of axial 
images comprising the volume)—whether in original resolution or resampled. 
When we describe that the ‘volume’ is labeled as malignant or non-malignant, we 
intend to communicate that the label is at a case level (that is, ‘there is cancer in the 
CT scan somewhere’).

Bounding box is a rectangular 3D sub-volume containing a malignancy. Our 
radiologist labelers were instructed to draw boxes that tightly encapsulate the 
malignancy. We call these resulting sub-volumes bounding boxes for this reason. 
Our detection model aims to predict these bounding boxes.

ROI is a fixed-size, 3D sub-volume containing a malignancy and some 
surrounding context. Once we have bounding boxes from our detection model, we 
take a fixed 90-mm3 region around each bounding box. We call this larger 3D sub-
volume an ROI.

Since the use of only a single label for an entire volume can be a challenging 
learning task, part of the model used a two-stage approach leveraging bounding 
box labels. First, two candidate ROIs were detected using a detection component 
trained on radiologist-annotated bounding boxes (see Methods, Localization 
analysis for annotation details and Extended Data Fig. 6 for details on how 
candidate regions were cropped from detected bounding boxes). We tried using up 
to seven candidates and arrived at two based on tune set performance.

Next, we combined the scores p1 and p2 from both candidates using the 
‘noisy-or’ equation1 – (1 – p1)(1 – p2) to produce a final score which was then 
trained against the case-level cancer diagnosis labels (see Extended Data Fig. 10). 
To summarize, the use of ‘noisy-or’ lets us train against the case-level ground truth 
in NLST even though internally the model is making predictions about two ROIs.

When classifying each candidate region, a purely two-stage approach would 
have access only to features within the candidate region and not from the full 
volume. It was not technically feasible to train a model on the full volume at the 
original resolution. To provide this global context for every candidate region, 
we trained a model on the full volume at a reduced resolution to predict cancer 
diagnosis and then combined features extracted from this model to those extracted 
from each candidate region. The input volume for each case was the entire 3D CT 
volume for the case, including the lung, mediastinum, heart, chest wall and so on, 
just as a radiologist would be given in practice. No manual image segmentation 
was performed. A total of 29,541 cases were used for training, including all volumes 
with slice thickness less than or equal to 2.5 mm. The model consists of lung 
segmentation, cancer ROI detection, a full-volume model and a final cancer risk 
prediction model based on the outputs of the full-volume model and the cancer 
ROI detection model. For each of these components, we chose a more general 
computer vision task (that is, instance segmentation, object detection and video 
classification) that was similar to the task performed by the component. Then, for 
each task we chose an approach that was state of the art at the time of our modeling 
experiments. For a schematic overview of the model see Fig. 1, and for a more 
detailed overview see Extended Data Fig. 10.

The approach consists of four components, all trained using the TensorFlow 
platform (Google Inc.)43:

	(1)	 Lung segmentation. We trained a lung segmentation Mask-RCNN44 ap-
proach, trained on the LUNA45 dataset using the TensorFlow Object Detec-
tion API46, which produced the lung segmentation mask. This mask was used 
to compute the center of its bounding box for step (c) and to determine an 
alignment with the prior volume. Since only the bounding box center is the 
key result of interest, the precise segmentation boundaries are not a factor in 
our modeling approach. It is likely that other lung segmentation approaches 
could substitute this component. Finding the lung center allows us to focus 
further processing on the lungs.

	(2)	 Cancer ROI detection model. This was trained on 1.4 × 0.7 mm2 (spac-
ing, pixel size) voxel size volumes. The cancer ROI detection architecture 
was a RetinaNet47 modified to be in 3D and to remove the feature pyramid 
network48. Extended Data Fig. 6a demonstrates how a large ROI was cropped 
around each bounding box detected. The detection model was initialized 
by first training on LIDC39 and then trained on radiologist-annotated lesion 
bounding boxes collected on the NLST dataset. The cancer ROI detection 
component outputs ROIs from all input volumes, even if no nodules are 
present. In this case, the most nodule-like regions are proposed as ROIs.

	(3)	 Full-volume model. An end-to-end convolutional model, 3D inflated Incep-
tion V1 (ref. 49,50), was trained on the 1.5-mm3 voxel size volumes to predict 
cancer within 1 year, fine-tuning from a checkpoint trained on ImageNet51. 
Each of these volumes was a large region cropped around the center of the 
bounding box as determined by lung segmentation. This cancer prediction 
model was trained with focal loss47 to try to mitigate the sparsity of positive 
examples. We trained the model to predict cancer probability and then  
used the last layer before the final probability, which contains 1,024 units. 
We take these 1,024 numbers as the output for this model, and use them as 
features later on.

	(4)	 Cancer risk prediction model. A final cancer classification model was used to 
consider the output of the previous two models. In all cases, 3D Inception is 
used to extract features. Throughout the model components, our approach to 
classifying and extracting features from 3D volumes is heavily based on this 
3D Inception model51. First, features were extracted from the detected ROIs 
(Extended Data Fig. 6a). Features from the full-volume model were appended 
to the final layers of each detected ROI in the second-stage model, so that all 
predictions relied on both nodule-level local information and global context 
from the entire CT volume. Extended Data Fig. 10 illustrates the unified end-
to-end approach, after the top two candidate ROIs were passed to the second-
stage malignancy classification model. It was trained as a single convolutional 
neural network with shared parameters across all detected ROIs. Each ROI 
was passed through this network to predict its individual malignancy score. 
The final prediction was generated by combining the two probability scores 
as shown in Extended Data Fig. 10 (ref. 32). This model was also trained with 
focal loss47 to try to mitigate the sparsity of positive examples.

The final cancer prediction model was developed to allow as input either 
a single CT scan (without prior) or both the current and prior year scan (with 
prior). The prior and current volumes were aligned based on the lung bounding 
box centers of two volumes and then by aligning nearby center candidate ROIs 
from the prior scan when available (Extended Data Fig. 6b). In each case a 3D 
shift of prior volume is performed to align the two centers. Higher-level spatial 
feature maps from the current and prior scans were combined and passed through 
additional convolutional layers with batch normalization. Since features of the 
current and prior scan considered at these higher levels represent the entire 
90-mm3 (the 64 × 128-mm2 cropped sub-volume with voxel size 1.4 × 0.7 mm2) sub-
volume at a low spatial resolution, precise alignment of the nodules is not required.

In the case of a malignant prediction, nodule localization was performed by 
selecting the ROI with the highest malignancy score. For a benign prediction, the 
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detection model is still forced to produce two ROIs which are then later rejected 
by the cancer risk prediction model. The final model is an ensemble of ten models 
trained with different random initializations. Additional detail can be found in 
Supplementary Information, Additional modeling details.

Clinical validation. The NLST-based test set comprised 6,716 cases, 86 of which 
had a biopsy-confirmed cancer within 1 year of screening. The model’s output is 
a probability between 0 and 1, which was bucketed using three thresholds. We 
used a previously developed approach to estimate the positive predictive value 
(PPV) of Lung-RADS 3, Lung-RADS 4A and Lung-RADS 4B/X33. We then chose 
three operating points that matched these PPV values on our tuning set, to have 
comparable probability of malignancy with the four existing Lung-RADS risk 
buckets. Since Lung-RADS 1 and 2 have the same management recommendations 
(return to routine annual screening) and risk of malignancy, we grouped these 
in the same bucket for this experiment. These operating points define LUMAS 
by establishing cutoffs for 1/2 versus 3 and 4A/B/X, 1/2/3 versus 4A/B/X and 
1/2/3/4A versus 4B/X: the same cutoffs within Lung-RADS at which the likelihood 
of malignancy increases and management is changed. When readers gave S- (other 
non-lung cancer findings) or C- (prior lung cancer diagnosis) modified ratings, 
these were treated in the same way as those without modifications (for example, 
3C was treated the same as 3), and cases with ratings of 0 were considered not 
gradable and dropped from the analysis. Both test sets were run only once to avoid 
influencing model development. Additionally, all individuals who worked on 
modeling and image analysis were blinded to the diagnoses in the test set.

Operating point selection. We define three LUMAS operating points as a way to 
compare the model to the readers. We computed Lung-RADS 3+ performance 
on our tune set using the nodule annotations from the original NLST readers, to 
arrive at a PPV of 0.11. We then adjusted the threshold of our model on the tune 
set to match this PPV of 0.11 and used the resulting model score threshold as our 
LUMAS 3+ threshold. We estimated 4A+ and 4B/X PPVs using a previous analysis 
of NLST33, which gave a PPV of 0.15 for 4A+ and 0.25 for 4B/X from which 
we computed LUMAS thresholds for 4A and 4B/X, respectively. We present an 
alternative way of making model-to-reader comparisons in Supplementary Table 4.

Retrospective application of model to NLST. The model used current and 
prior CT volumes when available. We followed the methodology in prior work33 
to estimate the performance of Lung-RADS 3 across the entire held-out test set, 
using nodule growth annotations to take into account priors when possible. For 
brevity, we call this performance estimate retrospective-Lung-RADS. As can be 
seen from Figs. 2b and 3b, retrospective-Lung-RADS seems to overestimate the 
specificity and underestimate the sensitivity compared to the readers for Lung-
RADS 3+. Reasons for these differences may include the fact that the NLST dataset 
nodule annotations are insufficient for accurate computation of Lung-RADS 
retrospectively. For example, endobronchial nodules were not noted in the NLST 
data and were therefore ignored, and the exact amount of nodule growth was not 
noted. As retrospective-Lung-RADS operates in such a different part of the receiver 
operating curve compared to Lung-RADS, we chose a different, non-LUMAS, 
operating point to compare our model’s performance to the readers in NLST (see 
Fig. 4a). We found two operating points, one which matched the sensitivity and 
one which matched the specificity of retrospective-Lung-RADS on our tune set. 
We then chose a final operating point midway between these two to improve both 
sensitivity and specificity in a balanced manner.

Reader studies. A two-part reader study was conducted comparing the model 
to six radiologists on a subset of the test set. All radiologists were US board-
certified with an average of 8 years’ clinical experience (range 4–20 years). Each 
reader independently reviewed the same set of cases and applied the Lung-RADS 
2014 v.1 criteria to determine a Lung-RADS score. A fully featured, web-based 
DICOM viewer (eUnity, Client Outlook Inc.) with FDA 510(k) clearance was 
used to evaluate cases. While the first reader study did not use prior imaging, the 
second used a single prior CT scan for comparison. In each case, readers were 
given information about the patient: race, gender, ethnicity, smoking history and 
cancer history. The model does not make use of this clinical information, as initial 
experiments with this data did not improve performance.

Performance comparisons were made for malignancy risk evaluation between 
the model and the average results of the six radiologists. For the model (using 
LUMAS) and the average reader (using Lung-RADS), we computed sensitivity 
and specificity at each of the three risk bucket thresholds—3+, 4A+ and 4B/X. 
The average reader sensitivity and specificity were computed by taking the 
average of the six individual reader sensitivities and specificities, respectively. 
The without priors reader study subset consisted of 507 patients, 83 of which 
were cancer-positives. There was a single volume per patient and the subset was 
enriched for biopsied cases (see Extended Data Fig. 1 for details on exclusion 
and enrichment). The cancer-negative biopsy cases were down-weighted in the 
subsequent analysis such that the final metrics on negatives were representative 
of a random sampling of negatives from the NLST test set. The with priors reader 
study was conducted on all cases from the without priors reader study that had an 
available prior.

Reader study—lung cancer screening on a single CT volume. A total of 507 cases 
(83 cancer-positives) were each independently interpreted by six US board-certified 
radiologists. In this study, neither the model nor the readers were given access to prior 
cases. Only axial CT slices were available for the first 250 cases; for the remaining cases, 
sagittal and coronal reformations and maximum-intensity projection images were 
available. Lung-RADS scores, slice number and anatomic lung location were recorded, 
and readers saved an ROI for each lesion with a Lung-RADS score of 2 or greater.

Reader study—lung cancer screening using current and prior CT volume. After 
completing part one, 308 patients (40 cancer-positives) that were known to have prior 
CTs available were re-presented to the same readers, now with a scan from the prior 
year available and with readers following the guidelines for Lung-RADS with baseline 
comparisons. They were then allowed to modify their Lung-RADS scores from part 
one. The model was also given access to the same CT scan from the prior year.

Localization analysis. Each NLST cancer-positive volume was labeled by two 
radiologists from a pool of nine (including five fellows and four practicing 
radiologists with a range of experience of 4–21 years (average, 9 years)). The 
radiologists were given the coarse locations of pathology-confirmed malignancies 
noted in NLST, and were then asked to label all malignancies with bounding boxes. 
We used all boxes labeled by either radiologist. Overlapping boxes referencing the 
same malignancy were combined into a single box by averaging the coordinates 
comprising the box. The Hit@N metric was defined as the fraction of true-positive 
cases in which the top N candidate lesions from the detection model made any 
overlap with an annotated malignancy. The recall metric involving all cancer-
positive cases is presented in Supplementary Table 8.

Statistical analysis. All confidence intervals were computed based on the 
percentiles of 1,000 random resamplings (bootstraps) of the data. Confidence 
intervals for differences were derived by computing the metric of interest and then 
computing a reader–model difference on each bootstrap. P values for sensitivity 
and specificity comparisons were computed using a standard permutation 
test52 using 10,000 random resamplings of the data. Briefly, for each resampling 
we randomly swapped the reader and model results for each case35. We then 
performed a two-sided hypothesis test comparing the model–reader difference 
with the distribution of 10,000 model–reader differences across the resampled data 
to obtain an empirical P value.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
This study used three datasets that are publicly available: LUNA: https://luna16.
grand-challenge.org/data/; LIDC: https://wiki.cancerimagingarchive.net/display/
Public/LIDC-IDRI; NLST: https://biometry.nci.nih.gov/cdas/learn/nlst/images/
The dataset from Northwestern Medicine was used under license for the current 
study, and is not publicly available.

Code availability
The code used for training the models has a large number of dependencies on 
internal tooling, infrastructure and hardware, and its release is therefore not 
feasible. However, all experiments and implementation details are described in 
sufficient detail in the Methods section to allow independent replication with 
non-proprietary libraries. Several major components of our work are available 
in open source repositories: Tensorflow: https://www.tensorflow.org; Tensorflow 
Estimator API: https://www.tensorflow.org/guide/estimators; Tensorflow Object 
Detection API: https://github.com/tensorflow/models/tree/master/research/
object_detection—the lung segmentation model and cancer ROI detection 
model were trained using this framework; Inflated Inception: https://github.com/
deepmind/kinetics-i3d—the full-volume model and the second-stage model were 
trained using this feature extractor.
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Extended Data Fig. 1 | NLST STARD diagram. a, Diagram describing exclusions made in our analysis. b, Table describing exclusions made by the NCI 
when selecting images to release from NLST. Note that there were 623 screen-detected cancers but a total of 638 cancer-positive patients. The additional 
15 patients were diagnosed during the screening window, but not due to a positive screening result. In this case Row 3 ‘Relevant Images’ meant that, for 
cancer-positive patients, there were images from the year of the cancer diagnosis, and for cancer-negative patients it meant that all 3 years of screening 
images were available. Note that the publicly available version of NLST downsampled the screening groups 3 (no nodule, some abnormality) and 4 (no 
nodule, no abnormalities). In Extended Data Figs. 2, 3, 4 and Supplementary Table 4 we present another version of the main analysis that compensates for 
this downsampling by upweighting patients within these groups.
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Extended Data Fig. 2 | Results from the reader study—lung cancer screening on a single CT volume: reweighted. a–e, Identical to Fig. 2, except that 
we took into account the biased sampling done in the selection of the NLST data released. This meant that examples in screening groups 3 (no nodule, 
some abnormality) and 4 (no nodule, no abnormality) were upweighted by the same factor by which they were downsampled (see Extended Data Fig. 1 
for further details on the groups). Model performance shown in the AUC curve and summary tables is based on case-level malignancy score. LUMAS 
buckets refers to operating points selected to match the predicted probability of cancer for Lung-RADS 3+, 4A+ and 4B/X. a, Performance of model (blue 
line) versus average radiologist for various Lung-RADS categories (crosses) using a single CT volume. The lengths of the crosses represent the confidence 
intervals. The area highlighted in blue is magnified in b to show the performance of each of the six radiologists at various Lung-RADS risk buckets. 
c, Sensitivity comparison between model and average radiologist. d, Specificity comparison between model and average radiologist. Both sensitivity 
and specificity analysis were conducted with n = 507 volumes from 507 patients, with P values computed using a two-sided permutation test with 
10,000 random resamplings of the data. e, Hit rate localization analysis used to measure how often the model correctly localized a cancerous lesion.
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Extended Data Fig. 3 | Results from the reader study—lung cancer screening using current and prior CT volume: reweighted. a–e, Identical to Fig. 3, 
except that we took into account the sampling done in the selection of the 15,000 patient NLST data released. This meant that for screening groups 3 
(no nodule, some abnormality) and 4 (no nodule, no abnormality) we upweighted each example by the same factor by which they were downsampled. 
Model performance in the AUC curve and summary tables is based on case-level malignancy score. The term LUMAS buckets refers to operating points 
selected to represent sensitivity/specificity at the 3+, 4A+ and 4B/X thresholds. a, Performance of model (blue line) versus average radiologist at various 
Lung-RADS categories (crosses) using a CT volume and a prior CT volume for a patient. The length of the crosses represents the 95% confidence interval. 
The area highlighted in blue is magnified in b to show the performance of each of the six radiologists at various Lung-RADS categories in this reader 
study. c, Sensitivity comparison between model and average radiologist. d, Specificity comparison between model and average radiologist. Both sensitivity 
and specificity analysis were conducted with n = 308 volumes from 308 patients with P values computed using a two-sided permutation test with 
10,000 random resamplings of the data. e, Hit rate localization analysis used to measure how often the model correctly localized a cancerous lesion.
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Extended Data Fig. 4 | Results from the full NLST test set and independent test set: reweighted. a,b, Identical to Fig. 4 except that we took into account 
the biased sampling done in the selection of the NLST data released. This meant that for screening groups 3 (no nodule, some abnormality) and 4 
(no nodule, no abnormality) we upweighted each example by the same factor by which they were downsampled. The comparison was performed on 
n = 6,716 cases, using a two-sided permutation test with 10,000 random resamplings of the data. a, Comparison of model performance to NLST reader 
performance on the full NLST test set. NLST reader performance was estimated by retrospectively applying Lung-RADS 3 criteria to the NLST reads. b, 
Sensitivity and specificity comparisons between the model and Lung-RADS retrospectively applied to NLST reads.
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Extended Data Fig. 5 | Independent dataset ROC curve and intersection over union for localization. a, AUC curve for the independent data test set with 
n = 1,739 cases using a two-sided permutation test with 10,000 random resamplings of the data. b, For each detection that was a ‘hit’ (overlapped with a 
labeled malignancy), this plot shows the volume of the intersection between the detection and the ground truth divided by the volume of the union of the 
ground truth and the detection. In 3D, intersection over union (IOU) drops much faster than in two dimensions (2D). For example, given a 1-mm3 nodule 
and a correctly centered 2-mm3 bounding box, the resulting IOU will be 0.125. In 2D, a similar situation would result in an IOU of 0.25.
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Extended Data Fig. 6 | Examples of ROIs from the detection model and examples of cases where the model prediction differs from the consensus grade. 
a, Example slices from cancer ROIs (cyan) determined by bounding boxes (red) detected by the cancer ROI detection model. The final classification model 
uses the larger additional context as input illustrated by the cyan ROI. b, Sample alignment of prior CT with current CT based on the detected cancer 
bounding box, which is performed by centering both sub-volumes at the center of their respective detected bounding boxes. When a prior detection is not 
available, the lung center is used for an approximate alignment. Note that features derived from this large, 90-mm3 context are compared for classification 
at a late stage in the model after several max-pooling layers that can discard spatial information. Therefore, a precise voxel-to-voxel alignment is not 
necessary. c, Example cancer-negative case with scarring that was correctly downgraded from a consensus grade of Lung-RADS 4B to LUMAS 1/2 by the 
model. d, Example cancer-positive case with a nodule (size graded as 7–12 mm, depending on the radiologist) correctly upgraded from grades of Lung-
RADS 3 and 4A (depending on the radiologist) to LUMAS 4B/X by the model.
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Extended Data Fig. 7 | Attribution maps generated using integrated gradients. a, Example of model attributions for a cancer-positive case. The top row 
shows the input volume for the full-volume and cancer risk prediction models, respectively. The lower row shows the attribution overlay with positive 
(magenta) and negative (blue) region contributions to the classifications. In all cancer cases under the attributions study, the readers strongly agreed 
that the model focused on the nodule. Also, in 86% of these cases, the global and second-stage models focused on the same region. b, Example of model 
attributions for a cancer-negative case. The left-hand image shows a slice from the input subset volume. The right-hand image image shows positive 
(magenta) and negative (blue) attributions overlayed. The readers found that, in 40% of the negative cases examined, the model focused on vascular 
regions in the parenchyma.
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Extended Data Fig. 8 | Example LUMAS false positive cases. a, 4B/X false positives. b, 4A+ false positives.
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Extended Data Fig. 9 | STARD diagram of low-dose-screening CT patients from an academic medical center used for the independent validation test 
set. We require a minimum of 1 year of follow-up for cancer-negative cases. This resulted in a median follow-up time of 625 d across all patients once all 
exclusion criteria were taken into account. To clarify, this means that the median amount of time from the first screening CT to either a cancer diagnosis or 
the last follow-up event was 625 d. There were 209 patients (232 cases) with priors in this set of 1,139.
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Extended Data Fig. 10 | Illustration of the architecture of the end-to-end cancer risk prediction model. The model is trained to encompass the entire 
CT volume and automatically produce a score predicting the cancer diagnosis. In all cases, the input volume is first resampled into two different fixed 
voxel sizes as shown. Two ROI detections are used per input volume, from which features are extracted to arrive at per-ROI prediction scores via a fully 
connected neural network. The prior ROI is padded to all zeros when a prior is not available.
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Software and code
Policy information about availability of computer code

Data collection eUnity: FDA-approved fully featured PACS viewer. Used to collect reader study results. 
MAPLE: Internal labeling tool. Used to collect localization ground truth.

Data analysis Colab: Internal version of Colab which is an iPython notebook viewer 
Pandas: Internal fork of  open source library Pandas which is a framework for tabular data 
Matplotlib: Internal fork of open source library Matplotlib which is for making plots 
sklearn: Internal fork of open source library Scikit-Learn which we used for metrics such as AUC 
Tensorflow: Internal fork of open source library used to train machine learning models 
Apache Beam: Internal fork of open source library used for large scale batch processing 
Tensorflow object detection API: https://github.com/tensorflow/models/tree/master/research/object_detection 
Inflated Inception: https://github.com/deepmind/kinetics-i3d 
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We used three datasets which are publicly accessible: 
 
LUNA: https://luna16.grand-challenge.org/data/ 
LIDC:  https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI 
NLST: https://biometry.nci.nih.gov/cdas/learn/nlst/images/ 
 
The dataset from Northwestern was used under license for the current study, and so is not publicly available. The data, or a test subset, may be available from 
Northwestern Medicine subject to ethical approvals.
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Sample size The first step in determining the sample size was the size of the test set we decided to use for the dataset from the National Lung Cancer 
Screening Trial (NLST). We had to balance having enough data to train the algorithm while having enough data to validate the algorithm. We 
used a 70% training (29,541 cases, 401 cancer positive), 15% tuning (6,309 cases, 100 cancer positive), 15% testing (6,729 cases, 87 cancer 
positive) split which is a standard way of splitting datasets for deep learning research. We believe this sample size was sufficient for the test 
set because the test set represents all 33 sites in the NLST trial, it contains all 4 stages of cancer, and all CT manufacturers present in the trial. 
 
For our independent dataset, the medical institution returned all available cases after NLST publication related to lung cancer screening. We 
used all cases where we could arrive at a clear conclusion about the cancer outcome. 
 
For our reader studies, we used positive enrichment by taking all cases within the test set with a same-year positive cancer diagnosis or 
biopsy, and then randomly sampling negatives. We believe the sample of negatives was sufficient as it was 5x larger than the number of 
positives used and we were able to see statistically significant improvements in performance for specificity in both reader studies.  
 
 
 

Data exclusions We excluded data only when it made subsequent analysis not possible: 
 
We excluded 3 studies that were not gradable as determined by our readers as there would be no way of making a reader-model comparison 
since no reader grade was returned. 
Cases where neither reader found a bounding box suspicious for malignancy in the volume were excluded from the localization analysis since 
there was no bounding box to compare to. 
There were a small number of patients in the independent dataset where either there were no images or it was not possible to assess ground 
truth due to insufficient follow-up, for instance the image was suspicious for cancer but was missing a biopsy confirmation. 
 

Replication We replicated the high performance of our model on a completely independent dataset from an academic medical center, with different scan 
parameters, and from a disjoint time period.

Randomization For NLST, we randomly split patients into the train, tune, or test split. All imaging and metadata from each patient was associated with the 
same split as the patient. 
 
For the reader study, we randomly selected negative cases from the test set. After a random selection of cases we randomly chose one 
volume from each patient to avoid having the same patient twice in the reader study. 

Blinding We held out the data from the test set and did not give anyone in the research group access to the images until we froze our choice of model 
and produced the test set results. We have done only one previous evaluation on the test set for an abstract for RSNA-2018 (using a different 
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model). In that case we only ran the model on the test set once, withholding access otherwise. No one on the model development team has 
been allowed to inspect the model’s performance on the test set at any point.

Reporting for specific materials, systems and methods

Materials & experimental systems
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Palaeontology
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics For NLST, the patient population characteristics are best described in the original NLST publication: 
The National Lung Screening Trial: Overview and Study Design 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009383/ 
 
For our independent dataset, we included all patients from the center who underwent lung cancer 
screening.

Recruitment All participants enrolling in NLST signed an informed consent developed and were approved by the screening centers’ 
institutional review boards (IRBs), the National Cancer Institute (NCI) IRB, and the Westat IRB. Additional details regarding 
cases in the dataset are available through the National Institutes of Health Cancer Data Access System. 
The independent dataset was gathered retrospectively under approval from the Northwestern University IRB 
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