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Abstract

Importance Non-contrast head CT scan is the current standard for initial imaging of
patients with head trauma or stroke symptoms.

Objective To develop and validate a set of deep learning algorithms for automated detec-
tion of following key findings from non-contrast head CT scans: intracranial hemorrhage
(ICH) and its types, intraparenchymal (IPH), intraventricular (IVH), subdural (SDH), ex-
tradural (EDH) and subarachnoid (SAH) hemorrhages, calvarial fractures, midline shift and
mass effect.

Design and Settings We retrospectively collected a dataset containing 313,318 head CT
scans along with their clinical reports from various centers. A part of this dataset (Qure25k
dataset) was used to validate and the rest to develop algorithms. Additionally, a dataset
(CQ500 dataset) was collected from different centers in two batches B1 & B2 to clinically
validate the algorithms.

Main Outcomes and Measures Original clinical radiology report and consensus of three
independent radiologists were considered as gold standard for Qure25k and CQ500 datasets
respectively. Area under receiver operating characteristics curve (AUC) for each finding was
primarily used to evaluate the algorithms.

Results Qure25k dataset contained 21,095 scans (mean age 43.31; 42.87% female) while
batches B1 and B2 of CQ500 dataset consisted of 214 (mean age 43.40; 43.92% female)
and 277 (mean age 51.70; 30.31% female) scans respectively. On Qure25k dataset, the
algorithms achieved AUCs of 0.9194, 0.8977, 0.9559, 0.9161, 0.9288 and 0.9044 for
detecting ICH, IPH, IVH, SDH, EDH and SAH respectively. AUCs for the same on
CQ500 dataset were 0.9419, 0.9544, 0.9310, 0.9521, 0.9731 and 0.9574 respectively.
For detecting calvarial fractures, midline shift and mass effect, AUCs on Qure25k dataset
were 0.9244, 0.9276 and 0.8583 respectively, while AUCs on CQ500 dataset were 0.9624,
0.9697 and 0.9216 respectively.

Conclusions and Relevance This study demonstrates that deep learning algorithms can
accurately identify head CT scan abnormalities requiring urgent attention. This opens up the
possibility to use these algorithms to automate the triage process. They may also provide a
lower bound for quality and consistency of radiological interpretation.

1 Introduction

Non-contrast head CT scans are among the most commonly used emergency room diagnostic tools
for patients with head injury or in those with symptoms suggesting a stroke or rise in intracranial
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pressure. Their wide availability and relatively low acquisition time makes them a commonly used
first-line diagnostic modality [1, 2]. The percentage of annual US emergency room visits that involve
a CT scan has been increasing for the last few decades [3] and the use of head CT to exclude the need
for neurosurgical intervention is on the rise[4].

The most critical, time-sensitive abnormalities that can be readily detected on CT scan include
intracranial hemorrhages, raised intracranial pressure and cranial fractures. A key evaluation goal in
patients with stroke is excluding an intracranial hemorrhage. This depends on CT imaging and its
swift interpretation. Similarly, immediate CT scan interpretation is crucial in patients with a suspected
acute intracranial hemorrhage to evaluate the need for neurosurgical treatment. Cranial fractures, if
open or depressed will usually require urgent neurosurgical intervention. Cranial fractures are also
the most commonly missed major abnormality on head CT scans [5, 6], especially if coursing in an
axial plane.

While these abnormalities are found only on a small fraction of CT scans, streamlining the head
CT scan interpretation workflow by automating the initial screening and triage process, would
significantly decrease the time to diagnosis and expedite treatment. This would in turn decrease
morbidity and mortality consequent to stroke and head injury. An automated head CT scan screening
and triage system would be valuable for queue management in a busy trauma care setting, or to
facilitate decision-making in remote locations without an immediate radiologist availability.

The past year has seen a number of advances in application of deep learning [7, 8, 9, 10, 11, 12] for
medical imaging interpretation tasks, with robust evidence that deep learning can perform specific
medical imaging tasks including identifying and grading diabetic retinopathy [13] and classifying
skin lesions as benign or malignant [14] with accuracy equivalent to specialist physicians. Deep
learning algorithms have also been trained to detect abnormalities on radiological images such as
chest radiographs[8, 9], chest CT [15, 16] and head CT [10, 11] through ‘classification’ algorithms;
as well as to localize and quantify disease patterns or anatomical volumes [17, 18, 19] through
‘segmentation’ algorithms.

The development of an accurate deep learning algorithm for radiology requires – in addition to
appropriate model architectures – a large number of accurately labeled scans that will be used to train
the algorithm[20]. The chances that the algorithm generalizes well to new settings increase when the
training dataset is large and includes scans from diverse sources[21, 22] .

In this manuscript, we describe the development, validation and clinical testing of fully automated
deep learning algorithms that are trained to detect abnormalities requiring urgent attention from
non-contrast head CT scans. The trained algorithms detect five kinds of intracranial hemorrhages
(ICH) namely intraparenchymal (IPH), intraventricular (IVH), subdural (SDH), extradural (EDH)
and subarachnoid (SAH), and calvarial/cranial vault fractures. Algorithms also detect mass effect and
midline shift, both used as indicators of severity of the brain injury.

2 Methods

2.1 Datasets

We retrospectively collected 313,318 anonymous head CT scans from several centers in India. These
centers, which included both in-hospital and outpatient radiology centers, employ a variety of CT
scanner models (shown in Table 1) with slices per rotation ranging from 2 to 128. Each of the scans
had a clinical report associated with them which we used as the gold standard during the algorithm
development process.

Of these scans, we earmarked scans of 23,163 randomly selected patients (Qure25k dataset) for
validation and used the scans of rest of the patients (development dataset) to train/develop the
algorithms. We removed post-operative scans and scans of patients less than 7 years old from the
Qure25k dataset. This dataset was not used during the algorithm development process.

A clinical validation dataset (referred as CQ500 dataset) was provided by the Centre for Advanced
Research in Imaging, Neurosciences and Genomics (CARING), New Delhi, India. This dataset
was a subset of head CT scans taken at various radiology centers in New Delhi. Approximately,
half of the centers are stand-alone outpatient centers and the other half are radiology departments
embedded in large hospitals. There was no overlap between these centers and the centers from where
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Dataset CT Scanner Models
Qure25k & Development GE BrightSpeed, GE Brivo CT315, GE Brivo

CT385, GE HiSpeed, GE LightSpeed, GE
ProSpeed, GE Revolution ACTs, Philips Bril-
liance, Siemens Definition, Siemens Emo-
tion, Siemens Sensation, Siemens SOMATOM,
Siemens Spirit

CQ500 GE BrightSpeed, GE Discovery CT750 HD, GE
LightSpeed, GE Optima CT660, Philips MX 16-
slice, Philips Access-32 CT

Table 1: Models of CT scanners used for each dataset

the development dataset was obtained. CT scanners used at these centers had slices per rotation
varying from 16 to 128. Models of the CT scanners are listed in Table 1. The data was pulled from
local PACS servers and anonymized in compliance with internally defined HIPAA[23] guidelines.

Similar to the development and Qure25k datasets, clinical radiology reports associated with the scans
in the CQ500 dataset were available. Although, we do not use them as gold standards in this study,
we use them for the dataset selection as described below.

We collected the CQ500 dataset in two batches (B1 & B2). Batch B1 was collected by selecting all
the head CT scans taken at the above centers for 30 days starting from 20 November 2017. Batch B2
was selected from the rest of the scans in the following way:

1. A natural language processing (NLP) algorithm was used to detect IPH, SDH, EDH, SAH,
IVH, calvarial fractures from clinical radiology reports.

2. Reports were then randomly selected so that there are around 80 scans with each of IPH,
SDH, EDH, SAH and calvarial fractures.

Each of the selected scans were then screened for the following exclusion criteria:

• Patient should not have any post-operative defect such as burr hole/shunt/clips etc.

• There should be at least one non-contrast CT series with axial cuts and soft reconstruction
kernel which covers the complete brain.

• Patient should not be less than 7 years old. Wherever age information is not available, it is
roughly estimated from ossification degree of cranial sutures[24].

Follow up scans for a patient were not excluded in the selection process.

2.2 Reading the scans

Three senior radiologists∗ served as independent readers for the CT scans in the CQ500 dataset.
They had corresponding experience of 8, 12 and 20 years in cranial CT interpretation. None of the
3 readers was involved in the clinical care or evaluation of the enrolled patients, nor did they have
access to clinical history of any of the patients. Each of the radiologists independently evaluated the
scans in the CQ500 dataset with the instructions for recording the findings and query resolution as
per the supplement. The order of presentation of the scans was randomized so as to minimize the
recall of the patients’ follow up scans.

CT scans were reviewed on a custom web based viewer built upon orthanc[25] and OHIF
framework[26]. Each reviewer could change the window level settings of the scans and had ac-
cess to all the series present in a given CT scan.

Each of the readers recorded the following findings for each scan:

∗Dr. Campeau was one of the three readers.
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(a) Slice from a head CT scan

X� Intracranial hemorrhage

X� Intraparenchymal

X� Intraventricular

� Subdural

� Extradural

� Subarachnoid

Location: X�Left X�Right

� Chronic

X� Midline Shift

X� Mass Effect

� Fracture

� Calvarial fracture

Remarks:

(b) Form used to record the findings

Figure 1: Schematic of the reading process for the CQ500 dataset.

• The presence or absence of a intracranial hemorrhage and if present, its type(s) (intra-
parenchymal, intraventricular, extradural, subdural and subarachnoid), age (chronic or not)
and cerebral hemisphere(s) affected (left, right).

• The presence or absence of midline shift and mass effect.
• The presence or absence of fractures. If present, if it is (partly) a calvarial fracture.

A text box was also provided to record any remark/observation which did not fit this decision flow.
Schematic of the reading process along with the form used to record the findings is shown in Figure 1

Intra-axial presence of blood due to any etiology such as hemorrhagic contusion, tumour/infarct
with hemorrhagic component was also included in the definition of intraparenchymal hemorrhage.
Chronic hemorrhages were considered positive in this study. Mass effect was defined as any of the
following: local mass effect, ventricular effacement, midline shift and herniation. Midline shift was
considered positive if the amount of shift was greater than 5mm. If there is at least one fracture that
extends into the skullcap, the scan is considered to have a calvarial fracture.

If unanimous agreement for each of the findings was not achieved by the three readers, the interpreta-
tion of majority of the readers was used as the final diagnosis.

On the development and Qure25k datasets, we considered clinical reports written by radiologists
as the gold standard. However, these were written in free text rather than in a structured format.
Therefore, a rule based natural language processing (NLP) algorithm was applied on radiologist’s
clinical reports to automatically infer the findings recorded above. We validated this algorithm on a
subset of reports from the Qure25k dataset to ensure that the inferred information was accurate and
could be used as gold standard.

2.3 Developing the algorithms

Deep learning is a form of machine learning where the model used is a neural network with a large
number of (usually convolutional) layers[27]. Training this model requires large amount of data for
which the ground truth is already known. Training is usually performed by an algorithm called back
propagation[28, 29]. In this algorithm, model is iteratively modified to minimize the error between
predictions of the model and the known ground truth for each data point.

One of the main challenges we faced in the development of the algorithms was the three dimensional
(3D) nature of the CT scans. This was primarily due to an issue termed as ‘curse of dimension-
ality’ where the data required to train a machine learning algorithm scales exponentially with the
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dimensionality of data [30]. Deep learning techniques have been extensively researched for the
tasks of segmentation[31, 32, 33] and classification[34, 35] of two dimensional images. While the
segmentation of 3D images is studied in multiple contexts [36, 37, 19], their classification is not as
well investigated. One closely related problem is recognition of human actions from short video
clips (because videos are three-dimensional with the time as the third dimension). Despite that this
problem is well explored in the literature [38, 39, 40], there was no emergence of a front running
architecture for this task[38]. Our approach of classification is closely related to that of Simonyan
and Zisserman [39] and involved slice level and pixel level annotation of a large number of scans.

In this study, we trained separate deep learning models for each of the subtasks viz. intracranial
bleeds, midline shift/mass effect and calvarial fractures which we describe below.

2.3.1 Intracranial Hemorrhage

Development dataset was searched for non-contrast head CT scans which were reported with any
of the IPH, IVH, SDH, EDH, SAH and those with neither of these. Each slice in these scans was
manually labeled with the hemorrhages that are visible in that slice. In all, 4304 scans (165809 slices)
were annotated, of which number of scans (slices) with IPH, IVH, SDH, EDH, SAH and neither
of these were 1787 (12857), 299 (3147), 938 (11709), 623 (5424), 888 (6861) and 944 (133897)
respectively.

We used ResNet18[35], a popular convolutional neural network architecture with a slight modification
to predict softmax based confidences[41] for the presence of each type of hemorrhage in a slice. We
modified the architecture by using five parallel fully connected (FC) layers in place of a single FC
layer. This design was based on the assumption that the image features[42] for detecting hemorrhages
would be similar for all the hemorrhage types. The confidences at the slice-level are combined using
a random forest[43] to predict the scan-level confidence for the presence of intracranial hemorrhage
and its types.

We further trained a model to localize the following type of hemorrhages: IPH, SDH, EDH. Local-
ization requires dense prediction[32] of presence or absence of bleed for every pixel in the scan. To
train models for dense predictions, pixels corresponding to the each bleed were annotated for a subset
of the above slice-annotated images to provide the ground truth for the model. This set contained
1706 images of which number of images with IPH, SDH, EDH and neither of these are 506, 243,
277 and 750 respectively. We used a UNet[33] based architecture for segmentation of each type of
hemorrhage.

2.3.2 Midline Shift and Mass Effect

The algorithm for detecting midline shift and mass effect was very similar to the one for detecting
intracranial hemorrhage. Each slice from select scans was labeled for the presence or absence of
midline shift and mass effect in that slice. Overall, 699 scans (26135 slices) were annotated, of which
number of scans (slices) with mass effect were 320 (3143) and midline shift were 249 (2074).

We used modified ResNet18 with two parallel fully connected layers to predict slice wise confidences
for the presence of mass effect and midline shift respectively. These slice level confidences were
thereby combined using a random forest to predict scan-level confidences for both the abnormalities.

2.3.3 Calvarial Fractures

Development dataset was searched for scans with calvarial fractures. Each slice in these scans was
annotated by marking a tight bounding box around fractures. Number of scans annotated were 1119
(42942 slices) of which 9938 slices showed a calvarial fracture.

Slices along with target bounding box was fed into a DeepLab[31] based architecture to predict
pixel-wise heatmap for fractures. Skull fractures are extremely sparse in this representation. Gradient
flow in the backpropagation algorithm tends to be hindered for such sparse signals. We therefore
employed hard negative mining loss [44, 45] to counter the sparsity of the annotation.

We engineered features representative of local fracture lesions and their volumes from the generated
heatmaps of the whole scan. We then used these features to train a random forest to predict scan-wise
confidence of presence of a calvarial fracture.
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2.3.4 Preprocessing

For a given CT scan, we selected the non-contrast axial series which uses soft reconstruction kernel
and resampled it so that slice thickness is around 5mm. We then resized all the slices of this series to
a size of 224× 224 pixels before passing to our deep learning models. Instead of passing the whole
dynamic range of CT densities as a single channel, we windowed the densities by using three separate
windows and stacking them as channels. Windows used were brain window (l = 40, w = 80), bone
window (l = 500, w = 3000) and subdural window (l = 175, w = 50). This was because fracture
visible in the bone window could indicate existence of an extra axial bleed in the brain window and
conversely, presence of scalp hematoma in the the brain window could correlate with a fracture.
Subdural window helps differentiate between the skull and an extra axial bleed that might have been
indistinguishable in a normal brain window[46].

2.4 Evaluating the algorithms

The combined algorithms when run on a scan produces a list of 9 real valued confidence scores in the
range of [0, 1] indicating the presence of the following findings: Intracranial hemorrhage and each of
the 5 types of hemorrhages, midline shift, mass effect and calvarial fracture. As described before, the
corresponding gold standards were obtained using majority voting for CQ500 dataset and by NLP
algorithm of reports for Qure25k dataset.

For both CQ500 and Qure25k datasets, receiver operating characteristic (ROC) curves[47] were
obtained for each of the above by varying the threshold and plotting true positive rate (i.e sensitivity)
and false positive rate (i.e 1 - specificity) at each threshold. Two operating points were chosen on the
ROC curve so that sensitivity ≈ 0.9 (high sensitivity point) and specificity ≈ 0.9 (high specificity
point) respectively. Areas under the ROC curve (AUCs) and sensitivities & specificities at these two
operating points were used to evaluate the algorithms.

2.5 Statistical Analysis

Sample sizes for proportions and AUCs were calculated using normal approximation and the method
outlined by Hanley and McNeil [47] respectively. The prevalence of our target abnormalities in a
randomly selected sample of CT scans tend to be low. This means that establishing the algorithms’
sensitivity with a reasonably high confidence on an un-enriched dataset would require very large
sample sizes. For example, to establish a sensitivity with an expected value of 0.7 within a 95%
confidence interval of half length of 0.10, number of positive scans to be read ≈ 80. Similarly, for a
finding with prevalence rate of 1%, to establish AUC within a 95% confidence interval of half length
of 0.05, number of scans to be read ≈ 20000.

The Qure25k dataset used in this study was randomly sampled from the population distribution and
had number of scans > 20000 following the above sample size calculations. However, constraints
on the radiologist time necessitated the selective sampling strategy outlined in the section 2.1 for
the CQ500 dataset. Manual curation of scans (by referring to the scans themselves) would have had
selection bias towards more significant positive scans. We mitigated this issue by random selection
where positive scans were determined from the clinical reports.

We generated confusion matrices for each finding at the selected operating points. We then calculated
the 95% confidence intervals for sensitivity and specificity from these matrices using ‘exact’ Clopper-
Pearson method[48] based on Beta distribution. Confidence intervals of area under the ROCs
were calculated following the ‘distribution-based’ approach described by Hanley and McNeil [47].
On the CQ500 dataset, we measured the concordance between paired readers on each finding
using percentage of agreement and the Cohen’s kappa(κ) statistic[49]. In addition, we measured
concordance between all the three readers on each finding using Fleiss’ kappa(κ) [50] statistic.

Sample sizes, sample statistics and confidence intervals were calculated using scikit-learn[51] and
statsmodels[52] python packages.

3 Results

Patient demographics and prevalences for each finding are summarized in Table 2. Qure25k dataset
contained 21095 scans of which number of scans reported positive for intracranial hemorrhage and
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Characteristic Qure25k
dataset

CQ500
dataset batch
B1

CQ500
dataset batch
B2

No. of scans 21095 214 277
No. of readers per scan 1 3 3

PATIENT DEMOGRAPHICS
Age

No. of scans for which age was known 21095 189 251
Mean 43.31 43.40 51.70
Standard deviation 22.39 22.43 20.31
Range 7− 99 7− 95 10− 95

No. of females / No. of scans for which sex
was known (percentage)

9030/21064
(42.87%)

94/214
(43.92%)

84/277
(30.31%)

PREVALENCE
No. of scans (percentage) with

Intracranial hemorrhage 2494 (11.82) 35 (16.36) 170 (61.37)
Intraparenchymal 2013 (9.54) 29 (13.55) 105 (37.91)
Intraventricular 436 (2.07) 7 (3.27) 21 (7.58)
Subdural 554 (2.63) 9 (4.21) 44 (15.88)
Extradural 290 (1.37) 2 (0.93) 11 (3.97)
Subarachnoid 611 (2.90) 9 (4.21) 51 (18.41)

Fractures 1653 (7.84) 8 (3.74) 31 (11.19)
Calvarial Fractures 992 (4.70) 6 (2.80) 28 (10.11)

Midline Shift 666 (3.16) 18 (8.41) 47 (16.97)
Mass effect 1517 (7.19) 28 (13.08) 99 (35.74)

Table 2: Dataset characteristics for CQ500 and Qure25k datasets.

calvarial fracture are 2494 and 992 respectively. CQ500 dataset included 491 scans of which batch
B1 had 214 scans and batch B2 had 277 scans. B1 contained 35 and 6 scans reported with intracranial
hemorrhage and calvarial fracture respectively. The same for B2 were 170 and 28 respectively.

Number of clinical reports analyzed in the selection process of the CQ500 dataset was 4462. Of
these, number of selected scans for batches B1 and B2 were 285 and 440 respectively. Number of
exclusions were 71 and 163 respectively resulting in a total of 491 scans. Reasons for exclusion were
non availability of images (113), post operative scans (67), scan had no non-contrast axial series (32)
and patient was less than 7 years old (22). Schematic of the dataset selection process of the CQ500
dataset is presented in Figure 2.

3.1 Qure25k dataset

Natural language processing (NLP) algorithm used to infer the findings from clinical reports in the
Qure25k dataset was evaluated on a total of 1779 reports. Sensitivity and specificity of the NLP
algorithm are fairly high; least performing finding was subdural hemorrhage with sensitivity of
0.9318 (95% CI 0.8134-0.9857) and specificity of 0.9965 (95% CI 0.9925-0.9987) while fracture
was inferred perfectly with sensitivity of 1 (95% CI 0.9745-1.000) and specificity of 1 (95% CI
0.9977-1.000). Sensitivity and specificity for all the target findings on the evaluated 1779 reports is
shown in Table 3a.

Table 4a and Figure 3 summarize the performance of deep learning algorithms on the Qure25k set.
Algorithm achieved AUCs of 0.9194 (95% CI 0.9119-0.9269) on intracranial hemorrhage, 0.9244
(95% CI 0.9130-0.9359) on calvarial fracture and 0.9276 (95% CI 0.9139-0.9413) on midline shift.
Algorithms performed the best on intraventricular hemorrhage with an AUC of 0.9559 (95% CI
0.9424-0.9694) and the worst on mass effect with an AUC of 0.8583 (95% CI 0.8462-0.8703).

At the high sensitivity operating point, sensitivities of the algorithms for intracranial hemorrhage,
calvarial fracture and midline shift were 0.9006 (95% CI 0.8882-0.9121), 0.9002 (95% CI 0.8798-
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CQ500 BATCH B1

285 Potentially
eligble reports

0 Scans not available

285 available scans

22 Post oper-
ative patients

263 available scans

28 Non-contrast
axial series not found

235 available scans

21 Age less
than 7 years

214 selected scans

Prevalence:
35 ICH (29 IPH, 7
IVH, 9 SDH, 2 EDH,
9 SAH),
6 Calvarial Fracture
18 Midline Shift
28 Mass Effect

CQ500 BATCH B2

4177 Potentially
eligible reports

440 reports se-
lected through NLP

113 Scans
not available

327 available scans

45 Post oper-
ative patients

282 available scans

4 Non-contrast axial
series not found

278 available scans

1 Age less
than 7 years

277 selected scans

Prevalence:
170 ICH (105 IPH,
21 IVH, 44 SDH, 11
EDH, 51 SAH),
28 Calvarial Fracture,
47 Midline Shift
99 Mass Effect

Figure 2: Dataset section process for batches B1 and B2 of the CQ500 dataset.

0.9181) and 0.9114 (95% CI 0.8872-0.9319) respectively. At this operating point, specificities for
these findings were 0.7295 (95% CI 0.7230-0.7358), 0.7749 (95% CI 0.7691-0.7807) and 0.8373
(95% CI 0.8322-0.8424) respectively.

3.2 CQ500 dataset

Concordance between the three readers on the CQ500 dataset was observed to be the highest for
intracranial hemorrhage (Fleiss’ κ = 0.7827) and intraparenchymal hemorrhage (Fleiss’ κ = 0.7746).
Calvarial fracture and subdural hemorrhage had the lowest concordance with Fleiss’ κ of 0.4507
and 0.5418 respectively. For each of the target findings, percentage agreement and Cohen’s kappa
between a pair of readers and Fleiss’ kappa for all the readers is shown in 3b

The algorithms generally performed better on the CQ500 dataset than on the Qure25k dataset.
AUCs, sensitivities and specificities are shown in Table 4b and ROCs are shown in 3. AUC for
intracranial hemorrhage was 0.9419 (95% CI 0.9187-0.9651), for calvarial fracture was 0.9624 (95%
CI 0.9204-1.0000), and for midline shift was 0.9697 (95% CI 0.9403-0.9991). Best AUCs were
recorded on midline shift (0.9697 , 95% CI 0.9403-0.9991) and extradural hemorrhage (0.9731, 95%
CI 0.9113-1.0000) while the worst AUC was on mass effect (0.9216, 95% CI 0.8883-0.9548).

Sensitivities of the algorithms at the high sensitivity operating point for intracranial hemorrhage,
calvarial fracture and midline shift were 0.9463 (95% CI 0.9060-0.9729), 0.9487 (95% CI 0.8268-
0.9937) and 0.9385 (95% CI 0.8499-0.9830) respectively. Specificities for the same were 0.7098

8



Finding #Positives Sensitivity
(95% CI)

Specificity
(95% CI)

Intracranial Hemorrhage 207 0.9807
(0.9513-0.9947)

0.9873
(0.9804-0.9922)

Intraparenchymal 157 0.9809
(0.9452-0.9960)

0.9883
(0.9818-0.9929)

Intraventricular 44 1.0000
(0.9196-1.0000)

1.0000
(0.9979-1.0000)

Subdural 44 0.9318
(0.8134-0.9857)

0.9965
(0.9925-0.9987)

Extradural 27 1.0000
(0.8723-1.0000)

0.9983
(0.9950-0.9996)

Subarachnoid 51 1.0000
(0.9302-1.0000)

0.9971
(0.9933-0.9991)

Fracture 143 1.0000
(0.9745-1.0000)

1.0000
(0.9977-1.0000)

Calvarial Fracture 89 0.9888
(0.9390-0.9997)

0.9947
(0.9899-0.9976)

Midline Shift 54 0.9815
(0.9011-0.9995)

1.0000
(0.9979-1.0000)

Mass Effect 132 0.9773
(0.9350-0.9953)

0.9933
(0.9881-0.9967)

(a) Qure25k dataset: performance of the NLP algorithm in inferring findings from the reports. This is measured
on 1779 reports from the Qure25k dataset

Finding Reader 1 & 2 Reader 2 & 3 Reader 3 & 1 All
Agreement
%

Cohen’s
κ

Agreement
%

Cohen’s
κ

Agreement
%

Cohen’s
κ

Fleiss’
κ

Intracranial hemorrhage 89.00 0.7772 90.84 0.8084 88.39 0.7646 0.7827

Intraparenchymal 91.24 0.7865 90.63 0.7651 90.84 0.7719 0.7746

Intraventricular 96.13 0.7042 97.15 0.7350 95.72 0.6550 0.6962

Subdural 87.98 0.4853 93.08 0.6001 90.02 0.5624 0.5418

Extradural 97.35 0.5058 98.37 0.7251 98.17 0.5995 0.6145

Subarachnoid 93.08 0.6778 90.84 0.6058 90.84 0.6363 0.6382

Calvarial Fracture 91.85 0.5771 92.06 0.3704 91.24 0.3637 0.4507

Midline shift 88.19 0.5804 87.17 0.5344 93.69 0.7036 0.5954

Mass effect 86.35 0.6541 87.98 0.6747 86.97 0.6837 0.6698

(b) CQ500 dataset: concordance between the readers

Table 3: Reliability of the gold standards for Qure25k and CQ500 datasets. On Qure25k, we used
an NLP algorithm to infer findings from a radiologist’s report. Three radiologists reviewed each of
the 491 cases on CQ500 dataset and majority vote of the readers is used as gold standard. Table 3a
shows the estimates of reliability of the used NLP algorithm while Table 3b shows the reliability and
concordance of radiologists’ reads
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Finding AUC
(95% CI)

High sensitivity operat-
ing point

High specificity operat-
ing point

Sensitivity
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Intracranial
hemorrhage

0.9194
(0.9119-0.9269)

0.9006
(0.8882-0.9121)

0.7295
(0.7230-0.7358)

0.8349
(0.8197-0.8492)

0.9004
(0.8960-0.9047)

Intraparenchymal 0.8977
(0.8884-0.9069)

0.9031
(0.8894-0.9157)

0.6046
(0.5976-0.6115)

0.7670
(0.7479-0.7853)

0.9046
(0.9003-0.9087)

Intraventricular 0.9559
(0.9424-0.9694)

0.9358
(0.9085-0.9569)

0.8343
(0.8291-0.8393)

0.9220
(0.8927-0.9454)

0.9267
(0.9231-0.9302)

Subdural 0.9161
(0.9001-0.9321)

0.9152
(0.8888-0.9370)

0.6542
(0.6476-0.6607)

0.7960
(0.7600-0.8288)

0.9041
(0.9000-0.9081)

Extradural 0.9288
(0.9083-0.9494)

0.9034
(0.8635-0.9349)

0.7936
(0.7880-0.7991)

0.8207
(0.7716-0.8631)

0.9068
(0.9027-0.9107)

Subarachnoid 0.9044
(0.8882-0.9205)

0.9100
(0.8844-0.9315)

0.6678
(0.6613-0.6742)

0.7758
(0.7406-0.8083)

0.9012
(0.8971-0.9053)

Calvarial fracture 0.9244
(0.9130-0.9359)

0.9002
(0.8798-0.9181)

0.7749
(0.7691-0.7807)

0.8115
(0.7857-0.8354)

0.9020
(0.8978-0.9061)

Midline Shift 0.9276
(0.9139-0.9413)

0.9114
(0.8872-0.9319)

0.8373
(0.8322-0.8424)

0.8754
(0.8479-0.8995)

0.9006
(0.8964-0.9047)

Mass Effect 0.8583
(0.8462-0.8703)

0.8622
(0.8439-0.8792)

0.6157
(0.6089-0.6226)

0.7086
(0.6851-0.7314)

0.9068
(0.9026-0.9108)

(a) Qure25k dataset: the algorithms’ performance

Finding AUC
(95% CI)

High sensitivity operat-
ing point

High specificity operat-
ing point

Sensitivity
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Intracranial
hemorrhage

0.9419
(0.9187-0.9651)

0.9463
(0.9060-0.9729)

0.7098
(0.6535-0.7617)

0.8195
(0.7599-0.8696)

0.9021
(0.8616-0.9340)

Intraparenchymal 0.9544
(0.9293-0.9795)

0.9478
(0.8953-0.9787)

0.8123
(0.7679-0.8515)

0.8433
(0.7705-0.9003)

0.9076
(0.8726-0.9355)

Intraventricular 0.9310
(0.8654-0.9965)

0.9286
(0.7650-0.9912)

0.6652
(0.6202-0.7081)

0.8929
(0.7177-0.9773)

0.9028
(0.8721-0.9282)

Subdural 0.9521
(0.9117-0.9925)

0.9434
(0.8434-0.9882)

0.7215
(0.6769-0.7630)

0.8868
(0.7697-0.9573)

0.9041
(0.8726-0.9300)

Extradural 0.9731
(0.9113-1.0000)

0.9231
(0.6397-0.9981)

0.8828
(0.8506-0.9103)

0.8462
(0.5455-0.9808)

0.9477
(0.9238-0.9659)

Subarachnoid 0.9574
(0.9214-0.9934)

0.9167
(0.8161-0.9724)

0.8654
(0.8295-0.8962)

0.8667
(0.7541-0.9406)

0.9049
(0.8732-0.9309)

Calvarial fracture 0.9624
(0.9204-1.0000)

0.9487
(0.8268-0.9937)

0.8606
(0.8252-0.8912)

0.8718
(0.7257-0.9570)

0.9027
(0.8715-0.9284)

Midline shift 0.9697
(0.9403-0.9991)

0.9385
(0.8499-0.9830)

0.8944
(0.8612-0.9219)

0.9077
(0.8098-0.9654)

0.9108
(0.8796-0.9361)

Mass effect 0.9216
(0.8883-0.9548)

0.9055
(0.8408-0.9502)

0.7335
(0.6849-0.7782)

0.8189
(0.7408-0.8816)

0.9038
(0.8688-0.9321)

(b) CQ500 dataset: the algorithms’ performance

Table 4: Performance of the algorithms on the Qure25k and CQ500 datasets. Neither of the datasets
was used during the training process. AUCs are shown for 9 critical CT findings on both these
datasets. Two operating points were chosen on the ROC for high sensitivity and high specificity
respectively.
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Figure 3: Receiver operating characteristic (ROC) curves for the algorithms on Qure25k and CQ500
datasets. Blue lines are for the Qure25k dataset and Red lines are for the CQ500 dataset. Readers’
TPR and FPR against consensus on CQ500 dataset are plotted along with the ROCs for comparison

(95% CI 0.6535-0.7617), 0.8606 (95% CI 0.8252-0.8912) and 0.8944 (95% CI 0.8612-0.9219)
respectively.

Algorithms’ performance difference between the CQ500 dataset and the Qure25k dataset was most
amplified for mass effect (AUC of 0.9216 vs 0.8583) and the least for intracranial hemorrhage (AUC
of 0.9419 vs 0.9149).

4 Discussion

Automated and semi automated detection of findings from head CT scans have been studied by other
groups. Grewal et al. [11] developed a deep learning approach to automatically detect intracranial
hemorrhages. They reported a sensitivity of 0.8864 and a positive predictive value (precision) of
0.8125 on a dataset of 77 brain CT scans read by three radiologists. However, the types of intracranial
hemorrhage considered were not mentioned in their report. Traditional computer vision techniques
like morphological processing were used by Zaki et al. [53] and Yamada et al. [54] to detect and
retrieve scans with fracture respectively. Neither of the two studies measured their accuracies on a
clinical dataset. Automated midline shift detection was also explored[55, 56, 57] using non deep
learning methods. Convolutional neural networks were used by Gao et al. [10] to classify head
CT scans to help diagnose Alzheimer’s disease. More recently, Prevedello et al. [58] evaluated the
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Gold standard Reader 1 Reader 2 Reader 3 Majority Vote
Finding
Intracranial hemorrhage 0.9080 0.9413 0.9356 0.9419
Calvarial fracture 0.9198 0.8653 0.9523 0.9624
Midline shift 0.9545 0.9386 0.9461 0.9697

Table 5: AUCs of the algorithms on CQ500 dataset when a single reader is considered the gold
standard and when the majority vote is considered the gold standard

performance of a deep learning algorithm on a dataset of 50 scans to detect hemorrhage, mass effect,
or hydrocephalus (HMH) and suspected acute infarct (SAI). They reported AUCs of 0.91 and 0.81 on
HMH and SAI respectively.

Our study is the first to describe the development of a system that separately identifies critical
abnormalities on head CT scans and to conduct a validation with a large number (21095) of scans
sampled uniformly from the population distribution. We also report the algorithms’ accuracy versus a
consensus of 3 radiologists on a second independent dataset, the CQ500 dataset. We make this dataset
and the corresponding reads available for public access†, so that they can be used to benchmark
comparable algorithms in the future. Such publicly available datasets had earlier spurred comparison
of the algorithms in other tasks like lung nodule detection[59] and chest radiograph diagnosis[8].

This work is novel because it is the first large study describing the use of deep learning on head CT
scans to detect and separately report accuracy on each finding, including the five types of intracranial
hemorrhage. Further, there is very little literature to date describing the accurate use of deep learning
algorithms to detect cranial fractures - we demonstrate that deep learning algorithms are able to
perform this task with high accuracy. The clinical validation of algorithms that detect mass effect and
midline shift (both used to estimate severity of a variety on intracranial conditions and the need for
urgent intervention) on such a large number of patients is also unique.

The algorithms produced fairly good results for all the target findings on both the Qure25k and
CQ500 datasets. AUCs for all the findings except mass effect were greater than or approximately
equal to 0.9. AUCs on CQ500 dataset were significantly better than that on the Qure25k dataset. We
hypothesize that this might be because of two reasons. Firstly, since radiologists reading Qure25k
dataset had access to clinical history of the patient, their reads incorporated extra clinical information
not available in the scans. The algorithms didn’t have access to this information and therefore did
not perform well. Secondly, majority vote of three readers is a better gold standard than that of one
reader. Indeed, we observed that AUCs of the algorithms on CQ500 were lower when a single reader
was considered the gold standard instead of the majority vote (see Table 5).

We have done an informal qualitative analysis by going through the algorithms’ output and the
three readers’ opinions on the CQ500 dataset. It was observed that the algorithms produced good
results for normal scans without bleed, scans with medium to large sized intraparenchymal and
extraaxial hemorrhages, hemorrhages with fractures and in predicting midline shift. There was room
for improvement for small sized intraparenchymal, intraventricular hemorrhages and hemorrhages
close to skull base. In this study, we didn’t separate chronic and acute hemorrhages. This resulted in
occasional prediction of scans with infarcts and prominent CSF spaces as intracranial hemorrhages.
Future research can improve the algorithms to mitigate these failure modes. We show some accurate
and erroneous predictions of the algorithms in Figure 5.

Our study has several limitations. Although the selection strategy ensured that there were a significant
number of positive scans in the CQ500 dataset for most of our target findings, number of scans with
extradural hemorrhage were found only to be 13. This makes the results of extradural hemorrhage on
the CQ500 dataset somewhat statistically insignificant.

For the scans in the CQ500 dataset, concordance between the three radiologists was not very high for
all the findings (see Table 3b). In particular, fracture had low Cohen’s kappas of 0.5771, 0.3704 and
0.3637 between the pair of readers. This might be because of non-availability of clinical history to
the readers. We observed that the readers were either very sensitive or very specific to a particular
finding. For example, two readers were highly sensitive to calvarial fracture while the third reader

†CQ500 dataset is available for download at http://headctstudy.qure.ai/dataset
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Finding Reader 1 Reader 2 Reader 3
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Intracranial hemorrhage 0.9805 0.8986 0.9268 0.9790 0.9122 0.9790
Calvarial fracture 1.0000 0.9519 0.9706 0.9628 0.4118 0.9978
Midline shift 0.8769 0.9883 0.9385 0.9038 0.8000 0.9883

Table 6: Sensitivities and specificities of the readers versus the majority vote

(a) Output produced by the hemorrhage segmentation
algorithms.

(b) Localization output produced by the calvarial
fracture detection algorithm.

Figure 4: Localizations produced by the algorithms. These can provide a visual display of the results.

was highly specific. Sensitivities and specificities of the readers for intracranial hemorrhage, calvarial
fracture and midline shift are shown in Table 6.

Another limitation of our study is that we have not excluded follow up scans of a patient from the
CQ500 dataset. This is primarily due to the fact that there were very few scans reported with some of
our target abnormalities like extradural and intraventricular hemorrhages. We couldn’t present the
extent of this limitation because of non-availability of unique identifier of the patients in this dataset.
However, note that there was no overlap of patients or scans between the CQ500 dataset and the
development dataset.

Since we also trained segmentation networks for hemorrhage detection algorithms, we can also output
a mask representing the precise location and extent of the hemorrhage (except for the subarachnoid
hemorrhage), in addition to detecting its presence. Similarly, our calvarial fracture detection algorithm
can produce a localization output. These outputs are represented in Figure 4. However in this paper,
we have not quantified their accuracy through independent radiologist reads. In this study, we
have limited our algorithm to the calvarial (cranial vault) fractures; the success of the algorithm on
detecting these means that our ongoing research can include an extension of the algorithm to all other
cranial and facial fractures.

5 Conclusion

Our results show that deep learning algorithms can be trained to detect critical findings from head CT
scans with good accuracy. The strong performance of deep learning algorithms suggest they could be
a helpful adjunct for identification of acute Head CT finding in a trauma setting, providing a lower
performance bound for quality and consistency of radiologic interpretation. It could also be feasible
to automate the triage process of Head CT scans with these algorithms. However, further research is
necessary to determine if these algorithms enhance the radiologists’ efficiency and ultimately improve
patient care and outcome.
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(a) Intraparenchymal hemorrhage
(in left frontal region)

(b) Subarachnoid hemorrhage (in
left parietal region)

(c) Subdural hemorrhage (along
falx)

(d) Subdural hemorrhage (chronic
in right parietal convexity)

(e) Extradural hemorrhage (in
right frontal convexity)

(f) Calvarial fracture (in right pari-
etal bone)

(g) Calvarial fracture (in right tem-
poral bone)

(h) Midline shift (i) Midline shift

Accurate predictions: True Positives

(j) False negative: tiny intraven-
tricular hemorrhage

(k) False positive: predicted as
subdural hemorrhage

(l) False negative: calvarial frac-
ture (in right parietal bone)

Erroneous predictions

Figure 5: Some accurate and erroneous predictions of the algorithms
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