The potential of Machine Learning In
biology

Robert Rozanski
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So what can be done?

symbolic ML
standard supervised ML

standard unsupervised ML
Deep Learning
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Symbolic ML

* Modeling approach: symbolic models (Boolean
Networks, Bayesian Networks, Petri Nets,
Pathway Logic, ... (many more))

o quantitative/spatial/temporal aspects abstracted
away to some degree (models can have some
discrete states and transition between them)

* many algorithms exist - the simpler the
formalism, the better (simulation, model
checking, construction, revision, exp. design, ...)
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Gebser et al. (2010), Repair and Prediction (Under Inconsistency) in Large Biological Networks with Answer Set Programming
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Symbolic ML - example 1

Gebser et al. “Repair and Prediction (Under
Inconsistency) in Large Biological Networks with
Answer Set Programming”

Modeling approach: sign consistency graph
(Boolean graph + annotations + consistency criteria)

algorithms: Answer Set Programming (Clingo) to
automate consistency checks and model revision

Initial model: E. coli (RegulonDB, 5150 interactions)

data: Exponential-Stationary growth shift (Bradley et
al. 2007) & Heatshock experiment (Allen et al. 2003)
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Symbolic ML - example 1

data repair (sign) model repair (interaction
sign or input node)
Exp.-Stationary growth 40 42
Heatshock 34 94

the method produces repairs of high quality:
predictions from minimal repairs for unobserved

nodes conform with test data (>90% accuracy
rate)
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Symbolic ML - example 2

learning structure of
metabolic networks

models
two-factor
rowth exp.
model & P
revision metabolite/
experiments  protein detection
consistency
test protein

localisation

experiment

execution

(simulation)

https://www.research.manchester.ac.uk/portal/files/60986384/FULL_TEXT.PDF



Symbolic ML - example 2
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avg. error reduction: 76% 25-86 reactions

https://www.research.manchester.ac.uk/portal/files/60986384/FULL_TEXT.PDF
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Standard Supervised ML

Py @ o® ax+b
® ..
training

(parameter fitting)

>

prediction
(classification)

>




Standard Supervised ML

training data

labels features

1.34 [0.33, 0.4, 0.67, -0.52]
3.56 [0.29, 0.73, 0.55, 0.12]
2.21 [0.36, 0.24, 0.47, 0.29]
0.78 [0.85, 0.33, -0.7, 0.23]
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Standard Supervised ML

training data

labels features

— 1.30
— 3.64
— 2.35
— 0.53

1.34 [0.33, 0.4, 0.67, -0.52] —»>
3.56 [0.29, 0.73, 0.55, 0.12] =9
2.21 [0.36,0.24, 0.47, 0.29] —»>
0.78 [0.85, 0.33, -0.7, 0.23] =

test data
labels features
0.45 [0.25,0.38,0.17, -1.22] 0.47

2.55 [0.52, 0.87, -0.55, 0.56] 2.48
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Standard Supervised ML: example 1

A Raw image Training by brush stroke Prediction of pixel classes

Segmented image Training by object labeling Prediction of object classes

Interphase M Metaphase
W Background

Interphase M Metaphase

Training by whole-image labeling Prediction of image class
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Experimental condition 1
B Experimental condition 2

Sommer et al. Machine learning in cell biology — teaching computers to recognize phenotypes (2013)



Standard Supervised ML: example 2

 Xu et al. A Gene Signature for Breast Cancer
Prognosis Using Support Vector Machine (2012)

* 50 gene signature (microarray gene expression)
used to predict metastasis using SVM (accuracy
0.97, sensitivity 0.99, specificity 0.93)

* Improvement over 70 gene signature (Recursive
Feature Elimination)



Standard Unsupervised ML

https://scikit-learn.org/stable/modules/clustering.html



Standard Unsupervised ML:
clustering

MiniBatchKMeansAffinityPropagation  MeanShift SpectralClustering Ward AgglomerativeClustering DBSCAN

https://scikit-learn.org/stable/modules/clustering.html
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Standard Unsupervised ML:
dimensionality reduction
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Sorzano et al. “A survey of dimensionality reduction techniques”
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Standard Unsupervised ML:
dimensionality reduction
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preparation of data for further classification, regression,
etc.

visualization and analysis

generative models

Sorzano et al. “A survey of dimensionality reduction techniques”



Standard Unsupervised ML:
dimensionality reduction

Basal cell carcinomas * Epidermal benign

* Epidermal malignant
Melanocytic benign

* Melanocytic malignant

t-Distributed Stochastic
Neighbor Embedding (t-SNE)

Squamous cell carcinomas
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Esteva et al. Dermatologist-level classification of skin cancer with deep neural networks (2017)



Deep Learning (Neural Networks)
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Deep Learning (Neural Networks):
example

Epidermal lesions Melanocytic lesions Melanocytic lesions (dermoscopy)
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Esteva et al. Dermatologist-level classification of skin cancer with deep neural networks (2017)



Deep Learning (Neural Networks):
example

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)
® Acral-lentiginous melanoma
® Amelanotic melanoma 4@ 92% malignant melanocytic lesion
a ® Lentigo melanoma
VA ® Blue nevus
T B ® Halo nevus & 8% benign melanocytic lesion
Convelution ‘@ Mongolian spot
AvgPool
MaxPool
Concat
Dropout
Fully connected
= Softmax

* base model: Google Inception v3 CNN (pretrained 1.28
million images / 1,000 classes)

 transfer learning: 129,450 skin lesions / 757 classes (2,032
different diseases)

Esteva et al. Dermatologist-level classification of skin cancer with deep neural networks (2017)



Deep Learning (Neural Networks):
example

CNN Dermatologist 1 Dermatologist 2
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Predicted label Predicted label Predicted label
Extended Data Figure 2 | Confusion matrix comparison between dermatologists erring on the side of predicting malignant. The distribution
CNN and dermatologists. Confusion matrices for the CNN and both across column 6—inflammatory conditions—is pronounced in all three

dermatologists for the nine-way classification task of the second validation  plots, demonstrating that many lesions are easily confused with this class.
strategy reveal similarities in misclassification between human experts and  The distribution across row 2 in all three plots shows the difficulty of

the CNN. Element (3, j) of each confusion matrix represents the empirical ~  classifying malignant dermal tumours, which appear as little more than
probability of predicting class j given that the ground truth was class cutaneous nodules under the skin. The dermatologist matrices are each
i, with i and j referencing classes from Extended Data Table 2d. Note that computed using the 180 images from the nine-way validation set. The
both the CNN and the dermatologists noticeably confuse benign and CNN matrix is computed using a random sample of 684 images (equally
malignant melanocytic lesions—classes 7 and 8—with each other, with distributed across the nine classes) from the validation set.

Esteva et al. Dermatologist-level classification of skin cancer with deep neural networks (2017)



Deep Learning (Neural Networks)
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Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks



Deep Learning (Neural Networks)

Wang et al. “Visual Concepts and Compositional Voting”



Deep Learning (Neural Networks)

+.007 x
: Vel 020D csign(9,.(6,2,)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow et al. “Explaining and Harnessing Adversarial Examples”



Symbolic ML:

intelligible models
can use established
types of models (if
suitable formalisms
and algorithms exit)
can automate
various analysis,
repair and design
tasks

easy to justify
output

can take advantage
of small data

poor handling of
numerical
parameters

Std. Supervised ML:

* models capture

numerical patterns
from labeled data
main tasks are
classification and
regression

human necessary
iIn model selection
and feature
engineering

need (often a lot of)
labeled data

Std. Unsupervised ML

* no labels needed

e can be used in
concert with
supervised methods
(dimensionality red.)

 or to find patterns in
data
(semisupervised
classification)

Deep Learning:

» hidden layers allow
for feature learning

 state of the art
performance on very
complex tasks
(Moravec'’s paradox)

* hype (+/-)

requires huge

amount of data

« complex black box
(generalisation?)



How hard Is it going to be?

1) Are data available?

e quantity/cost: gathering data can be >80% of the work;
also slows everything down

 quality: missing data? noise?

* relevance: spurious features? How easy to extract relevant
features? (domain knowledge, another 80%)



How hard Is it going to be?
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* relevance: spurious features? How easy to extract relevant
features? (domain knowledge, another 80%)

2) Does the problem match?

e classification/regression: should be straightforward

» deep learning: hard, unless transfer learning used

* symbolic:straightforward, if suitable formalism exists
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