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Plan for today

Linear classification and linear SVM.
Convex optimization and duality.
Features, kernels and kernel trick.
Nonlinear (kernel) SVM.
Other kernel methods
Examples
Some diversions. . . (?)
Not today:

In depth theory of kernels and RKHS.
VC-dimension and statistical theory of learning
More omitions. . .
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Linear classifiers

Naive, based on class means
— why it’s not the best possible one.
Fisher classifier — the celebrated classics! LDA.
Linear SVM.
Underlying optimization scheme.
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Example 1: symmetric gaussian distributions
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Example 1: naive attempt is not so bad . . .
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accuracy=89.05%
(994/6, 787/213)
mean=(-1,0), sigma=0.5
mean=(1,0), sigma=1.0
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Example 1: better with correction for pdf widths’

2 1 0 1 2 3 4
3

2

1

0

1

2

3 naive classifier
accuracy=89.05%
(994/6, 787/213)
with Mahalanobis
correction
accuracy=91.00%
(905/95, 915/85)
mean=(-1,0), sigma=0.5
mean=(1,0), sigma=1.0

Krzysztof Czarnowski SVM



Example 2: asymmetric gaussian distributions
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sigma x/y=0.5/2.0
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Example 2: naive attempt is worse. . . . . .
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accuracy=80.40%
(859/141, 749/251)
mean=(-1,-1),
sigma x/y=0.5/2.0
mean=(1,1),
sigma x/y=0.5/2.0
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Example 2: classical Fisher classifier much better
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accuracy=80.40%
(859/141, 749/251)
Fisher classifier
accuracy=98.45%
(986/14, 983/17)
mean=(-1,-1),
sigma x/y=0.5/2.0
mean=(1,1),
sigma x/y=0.5/2.0
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Example 2: linear SVM classifier almost as good
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4 naive classifier
accuracy=80.40%
(859/141, 749/251)
Fisher classifier
accuracy=98.45%
(986/14, 983/17)
linear SVM classifier
accuracy=97.90%
(978/22, 980/20)
mean=(-1,-1),
sigma x/y=0.5/2.0
mean=(1,1),
sigma x/y=0.5/2.0
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Fisher classifier
The idea was introduced by Ronald
Fisher in his classic paper from 1936
on discriminating three Iris flower spe-
cies based on four anatomical measu-
rements (Iris data)

Consider the two class problem
and seek the best dicriminating
direction w in the observation
space. Ronald Fisher, 1890-1962
Let m1 and m2 denote estimated class means. It’s natural to
choose w to maximize inter-class separation along w

w · (m2 −m1)

But then obviously w ∝ m2 −m1 — we just get the naive
classifier! So another optimization criterium is added. . .

Graphics: https://en.wikipedia.org/wiki/Ronald_Fisher
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Fisher classifier, continued

Let S1, S2 denote the corresponding estimated in-class
covariance matrices.
Another natural objective while choosing w is to minimize both
of the in-class variances along w, or just the sum of these:

w · S1w + w · S2w = w · (S1 + S2)w

The final optimization criterium is

arg max
w

(w ·m12)2

w · S12w
(1)

where m12 = m2 −m1 and S12 = S1 + S2.
This can be interpreted as maximizing signal-to-noise ratio in
the training data!
(Why do we absolutely need the square in the nominator?)
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Fisher classifier, solution

The solution is found by equating the derivative to zero (some
math involved):

w ∝ S−1
12 m12

Remark: The idea behind (1) may probably be applied in many
new contexts. I like the appeal. . .
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Linear SVM

A different approach to
optimum separation. . .
The idea of maximum-margin
separating hyperplane was
developped by Vladimir Vapnik
and others around 1964-65.
The optimally separating
hyperplane is based on
extreme training observations
which are called support
vectors here.

Side note: classical perceptron learning algorithm may as well
end up in H2-like classifier. (Learning stops when all training
examples are classified correctly.)

Graphics: https://en.wikipedia.org/wiki/Support_vector_machine
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Linear SVM continued

Let xi ∈ Rd , yi ∈ {−1, 1},
i = 1, 2, . . .N denote the
training data and targets.
We assume that the training
data is linearly separable, so
there exists a hyperplane

H : w · x + b = 0, ‖w‖ > 0

such that

yi (w · xi + b) > 0,

i = 1, 2, . . .N

Graphics: https://en.wikipedia.org/wiki/Support_vector_machine
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Linear SVM, optimization criterium

By appropriately scaling w and b we can assume that

yi (w · xi + b)  1, i = 1, 2, . . .N

where the equality takes place for at least one observation
from both the negative and positive class.
The margin for hyperplane H is then equal to 2/‖w‖. (Recall
that the distance from a point x to H is given by
|w · x + b|/‖w‖.)
So the optimal H is found by solving the following constrained
minimization problem

arg min
w,b

1
2
‖w‖2 (2)

yi (w · xi + b)  1, i = 1, 2, . . .N (3)
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Linear SVM, soft margin

However, there are two issues with (2-3).
the training set may not be linearly separable in the first place
susceptability to outliers

So we allow to relax the constraint for individual training
vectors and introduce a penalty for this

arg min
ξ,w ,b

1
2
‖w‖2 + C

∑
i

ξi (4)

yi (w · xi + b)  1− ξi , ξi  0, i = 1, 2, . . .N (5)

C balances the cost of decreasing ‖w‖2 by introducing a
positive ξi for some training vectors. (This is kind of l1
regularization.)
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Linear SVM and convex optimization

For now we shall stick with non-regularized version, for
simplicity.
Problem (2-3) is a quadratic programming problem
(minimization of a quadratic function subject to constraints
involving inequalities with linear functions) for which solvers
are available.
So problem solved. . .
Kind of. . . but a re-statement is beneficial!
For an even more general class of convex problems:

arg min
w

f (w) (6)

gi (w) ¬ 0, i = 1, 2, . . .N (7)

where all functions f and all gi are convex, the problem can be
converted to another — a dual problem.

Krzysztof Czarnowski SVM



Lagrangian

We define the Lagrangian for problem (6-7):

L(w, α) = f (w) +
∑
i

αigi (w), αi  0, i = 1, 2, . . .N

This is like Lagrangian for a problem with equality constraints
(part of standard university calculus course), but here with
additional constraints on the multipliers αi .
Consider the following quantity:

Θ(w) = max
α: ∀iαi0

L(w, α)

The point is that (obvious!):

Θ(w) =

{
+∞, if w violates any of the conditions (7)
f (w), otherwise

So we can replace problem (6-7) by the following:

min
w

Θ(w) = min
w

max
α: ∀iαi0

L(w, α) ( = Θ∗)
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Duality

How about changing the order of “min” and “max”? The
following inequality holds generally:

(θ∗ = ) max
α: ∀iαi0

min
w
L(w, α) ¬ min

w
max

α: ∀iαi0
L(w, α) ( = Θ∗)

It’s just because it holds really generally

max
x

min
y

F (x , y) ¬ min
y

max
x

F (x , y)

for any function of two variables. Easy!
However the inverse inequality does not hold in this generality
(consider 2xy/(x2 + y2), 0 < x , y < 1), so the inequality may
in fact be strong for some function and variable domains.
Yet, for the problem (2-3), since minimized function is convex
and constraints are affine, we have the equality θ∗ = Θ∗.
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Duality continued

So the problem (2-3) has an associated dual problem

arg max
α

θ(α) (8)

αi  0, i = 1, 2, . . .N (9)

where

θ(α) = min
w,b

{
1
2
‖w‖2 +

∑
i

αi [1− yi (w · xi + b)]

}

The minimum with respect to w can be computed by following
standard ways. Equating the (w, b)-derivative to zero and
solving for w and b we get:

w =
∑
i

αiyixi (10)∑
i

αiyi = 0 (11)
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Dual problem final form

Substituting back we get the following expression for θ:

θ(α) =
∑
i

αi −
1
2

∑
ij

yiyjαiαj xi · xj ,
∑
i

αiyi = 0 (12)

and the formulation of the dual problem:

arg max
α

θ(α),
∑
i

αiyi = 0, αi  0, i = 1, 2, . . .N (13)

and the decision criterium for unseen x:

f (x) = w · x + b =
∑
i

αiyi xi · x + b (14)

b = −(1/2)
(

max
i :yi=−1

w · xi + min
i :yi=1

w · xi
)

Since the solution of (13) yields all αi zero except for a small
number of support vectors, the sum and min/max in (14) are
restricted to only a small number of indexes, say i ∈ S .
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Why bother about duality?

But finally, what’s the real gain in moving from primary to
dual problem in SVM?
There is a specialized and very effective algorithm for solving
this particular QP problem: the sequential minimal
optimization (SMO) algorithm. (Not part of this presentation.)
But I also like an answer I saw somewhere in the Web.

short one: kernels!
longer: keeerneeeels!

The nice property of the dual problem and decision criterium is
that the training data appears exclusively in the form of scalar
products xi · xj .
This allows for easy replacement of raw observations by
features. . . Possibly very high-dimensional ones.
And features are connected to kernels. . .
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Nonlinear classification problems

Some classification problems can’t
be solved with linear methods —
notably the XOR problem.
Regardless that the training data
is not linearly separable in the
original observation space this is
“easily” overcome by introducing
an extra feature φ(x) = x1x2.

When mapped to a higher dimensional feature space with

(x1, x2) 7→ (X1,X2,X3) = Φ(x1, x2) = (x1, x2, x1x2)

the data is separable with X3 = 0 hyperplane (or some other
which may be even more optimal for the data).
The resulting classification boundary in the observation space
is nonlinear.
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SVM with features

Assume that we have feature set Rd 3 x 7→ Φ(x) ∈ RD .
There may be a lot of features (D much bigger than d), but
they are great in separating training data!
To run SVM with features rather than original observations, it
suffices to replace x’s by Φ(x)’s in (12), (13) and (14).
Note that we now need no structure in the observation space
— no geometry, distance, scalar products, hyperplanes,. . . So
it can be just a plain set X instead of Rd . Only the feature
space counts now and the performance of features.
Two little problems. . .
A lot of features result in more workload, like O(D2).
How to develop good feature set?
Interestingly both of them can be addressed with kernels. . .
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From features to kernel . . .

With a feature map Φ : X → RD we can define a 2-variable
function:

K : X × X → R, K (x, x′) = Φ(x) · Φ(x′) (15)

Obviously K is symmetric:

∀x,x′∈XK (x, x′) = K (x′, x) (16)

And the following property is quite easy to verify:

∀n∀x1,x2,... xn∈X∀α1,α2,... αn∈R

n∑
i ,j=1

αiαjK (xi , xj)  0 (17)

(The sum is equal to X · X, where X =
∑

i αiΦ(xi ).)
We call K a (symmetric, positive-definite) kernel on X .
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. . . and back

Assume K is a kernel on X , so that (16-17) hold. Then, with
some additional more theoretical assumptions, there exists a
mapping Φ : X → H, where H is a space with a scalar
product, such that

K (x, x′) = Φ(x) · Φ(x′)

The little catch here is that the space H may be infinite
dimentional and · is the scalar product in H — a kernel is
generally associated with infinitely many features.
So H is a Hilbert space. . . But do we care?
No! Because we don’t have to see features and compute the
scalar products explicitely — the kernel computes them for us!
About the “additional assumptions”. . . These may be: let X
be a compact topological space with a strictly positive finite
Borel measure and K be continues. Or just X = [a, b] and K
continues. For the curious: see Mercer’s theorem.
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Kernel SVM

θ(α) =
∑
i

αi −
1
2

∑
ij

yiyjαiαj K (xi , xj),
∑
i

αiyi = 0

arg max
α

θ(α),
∑
i

αiyi = 0, αi  0, i = 1, 2, . . .N

f (x) =
∑
i∈S

αiyi K (xi , x) + b

b = −(1/2)
(

max
i∈S:yi=−1

f0(xi ) + min
i∈S:yi=1

f0(xi )
)
,

f0(xi ) =
∑
j∈S

αjyj K (xj , xi )

Note that K (xi , xj) = Kij is just a matrix (symmetrical and
positive-semidefinite).
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Kernel SVM, continued

Kernel SVM was developped by Vapnik and co-workers in
1992-95:

Initial paper introducing the algorithm: Boser, Guyon and
Vapnik, 1992
Matched performance on MNIST with CNN at the time:
Cortes and Vapnik, 1995

Results on MNIST in 1995:
Test error for SVM: 1.1%. LeNet-1: 1.7, LeNet-4: 1.1.
However LeNet-4 was carefully handcrafted based on the errors
made by a long standing state-of-the-art LeNet-1 (since 1989)
SVM was not engineered in a similar fashion, citation from
LeCun et. al., 1998:
The SVM has excellent accuracy, which is most remarkable,
because unlike the other high preformance classifiers it does
not include a priori knowlegde about the problem. In fact, this
classifier would do just as well if the image pixels were
permuted with a fixed mapping and lost their pictorial
structure.
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Kernel SVM, continued

Interestingly SVM (and kernel methods in general) became the
mainstream machine learning algorithm in late 1990’s early
2000’s and the interest in ANN’s decreased considerably.
Things changed again around 2010.
Maybe it’s good to remember this?
A little curiosity from speech domain, not so old: Huang,
Avron, Sainath, Sindhwani, Ramabhadran, Kernel methods
match deep neural networks on TIMIT, 2014.
(Most of the authors from IBM T.J. Watson Research Center.
It’s not about SVM but randomized approximate feature maps
generated with kernels. . . But not today!)
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What kernel?

The intuition is that the kernel is a similarity measure in the
observation space. This similarity measure implies features.
Anyway, the choice of the kernel is the tricky part! Apart from
regularization weight. . . Some example kernels:

Polynomial kernel with degree p:

K (x, x′) = (x · x′ + c)p, c >= 0, p ∈ N

Radial basis function (or gaussian) kernel:

K (x, x′) = exp(−‖x− x′‖2/2σ2), σ > 0

And of course many more, also of a different taste: string
kernels for text classification, graph kernels, Fisher information
kernels, locality improved kernels,. . . One can also construct
kernels from other kernels.

Some try to learn the kernel from the data. . .
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Example 3: Iris data, PCA transformed
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Iris data, PCA 2d transformation

Setosa train
Setosa test
Versicolor train
Versicolor test
Virginica train
Virginica test
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Example 3: Versicolor vs Virginica, Fisher classifier
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Fisher classifier Versicolor/Virginica, train/test accuracy (%): 97/93
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Example 3: Versicolor vs Virginica, linear SVM
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Linear SVC Versicolor/Virginica, train/test accuracy (%): 98/93
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Example 3: Versicolor vs Virginica, cubic SVM
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Cubic SVC Versicolor/Virginica, train/test accuracy (%): 100/85
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Example 3: Versicolor vs Virginica, gaussian SVM
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Gaussian SVC Versicolor/Virginica, train/test accuracy (%): 98/93
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Example 3: Versicolor vs Setosa+Virginica, square SVM
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Square SVC Versicolor/Setosa+Virginica, accuracy (%): 99/95
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Kernel methods: high level view

The basic idea is:
Choose a kernel K (x, x′) and thus the implicit feature map
Φ(x). No need to see/derive any explicit formula for Φ!
Solve the underlying linear problem in the feature space. As
long as the solution involves only scalar products of features of
training data, the kernel K will suffice.
Map the solution back to original observation space — done!

Many examples: kernel SVM, kernel PCA, kernel DA
(kernelized LDA), . . .
Consider PCA. The linear classics works like this: assume that
we have zero centered training data (1/N)

∑
n xn = 0 we

compute the covariance matrix C = (1/N)
∑

n xnxTn =, which
is symmetric. Then we solve the eigenvalue problem Cx = λx.
Eigenvectors of largest eigenvalues indicate principal directions.
Let’s take a look at the kernelized version. . . (Some details are
skipped. For example: how to ensure zero centering in the
feature space? See Schölkopf et.al 1998)
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Kernel PCA, the algorithm

For the kernel version the underlying feature space problem is

CV = λV, C =
1
N

∑
n

VnVT
n , Vn = Φ(xn)

Since CV = (1/N)
∑

n(Vn · V)Vn the eigenvectors are
spanned by Vn so it’s sufficient to compute the coefficients
V =

∑
n anVn. We rewrite the eigenvalue problem like so:

Vm · CV =
1
N

∑
n

(Vn · Vm)(Vn · V) =
1
N

∑
n

Knman

where Kmn = Vm · (V)n = K (xm, xn) and since the right hand
side is then λam we get (1/N)

∑
n Knman = λam. Finally (K is

symmetric):
Ka = Nλa

Projection onto eigenvector (corresponding to) a is given by

(
∑
n

anVn) · V =
∑
n

anK (xn, x)
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Example 4: Iris data, kernel PCA
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Example 5: KPCA example from Wikipedia
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Example 5: KPCA with square polynomial kernel
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Example 5: KPCA with gaussian kernel
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