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This is an opinion paper about the strengths and weaknesses of Deep Nets.
They are at the center of recent progress on Artificial Intelligence and are of
growing importance in Cognitive Science and Neuroscience since they enable
the development of computational models that can deal with a large range
of visually realistic stimuli and visual tasks. They have clear limitations but
they also have enormous successes. There is also gradual, though incomplete,
understanding of their inner workings. It seems unlikely that Deep Nets in
their current form will be the best long-term solution either for building general
purpose intelligent machines or for understanding the mind/brain, but it is likely
that many aspects of them will remain. At present Deep Nets do very well on
specific types of visual tasks and on specific benchmarked datasets. But Deep
Nets are much less general purpose, flexible, and adaptive than the human visual
system. Moreover, methods like Deep Nets may run into fundamental difficulties
when faced with the enormous complexity of natural images. To illustrate our
main points, while keeping the references small, this paper is slightly biased
towards work from our group.



Overview

Success story.

Understanding deep nets.

Training with less supervision / transfer learning.
What does not work yet.

Compositional models.
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Computer Vision Tasks

Classification

Classification + Localization

Instance
Segmentation

Object Detection

CAT, DOG, DUCK
)

CAT, DOG, DUCK
AN

Single object

S
Multiple objects

Supervised training - huge number of specialized datasets: ImageNet, MSCOCO (general categories),
KITTI (autonomous cars), UA-Detrac (traffic monitoring), ...

http://www.themtank.org/a-year-in-computer-vision



ImageNet

Categorize image to one of 1000 categories. 1.2M images in training set, 100K in
test. Deep learning revolution starting in 2012
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DL architecture for CV
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Feature Extraction from Image Classification
e Learning powerful (semi-hierarchical) image representation (instead of hand
crafted ones)
e Scalability to millions of training examples



Impressive performance on many tasks
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P. Hu, D. Ramanan, Finding Tiny Faces, 2016, CMU



Realtlme Multl Person 2D Pose Estlmatlon usmg Part Affinity Fields

USAJ United States of America
A moression

MPII Human Pose dataset of articulated human pose estimation. The dataset includes
around 25K images containing over 40K people with annotated body joints.
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Understanding deep nets



Places-CNN

Understanding Deep Nets

Neural network trained to classifier scenes
High level layer appears to be detecting semantic objects
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Object detectors emerge in deep scene CNNs, A. Torralba et al. 2015
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Figure 4: Figure taken from Wang et al. (2015). The visual concepts obtained
by population encoding are visually tight and we can identify the parent object
class pretty easily by just looking at the mid-level concepts.

Unsupervised learning of object semantic parts from internal states of CNNs by population encoding



Transfer learning

e Disadvantage of Deep Nets is that they typically need a very large amount of
annotated (i.e. fully supervised) training data

Transfer learning:

e pre-train neural network weights on similar dataset (ImageNet?) to obtain
good image / feature representation
e fine-tune with limited annotated set

What if we want to apply DL to problem where there is no related annotated
dataset (i.e. CT scans, robotics)?




Self-supervised learning

Humans learns a lot in unsupervised manner

Learn image representation without annotations by
using pretext task on large scale datasets:

e Unsupervised Visual Representation Learning by

Context Prediction (C. Doersch et al. 2015) %‘r\ ;i
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What does not work

Adversarial examples
Robustness
Generalization

Learning for the long tail
Safety critical applications



Adversarial examples - classification at pixel level

All images on the right classified as ostrich

C. Szegedy et. al. Intriguing properties of neural networks, 2014



Adversarial examples - intuition

Image space dimensionality =W * H * 3 ~= (227 *
227 * 3 = 150K)

Training set covers only tiny subset of almost
infinite number of all possible images. Adversarial
examples lies in the space far from learned
manifold.

Y. Bengio: The current incarnation of deep neural
networks have a tendency to learn surface
statistical (superficial cues) regularities as
opposed to high level abstraction.




Adversarial examples - context level

Context plays an important role in recognition — problem when test distribution != train
distribution

Neural nets often overfits to typical context of the object

Visual Concepts and Compositional Voting, J. Wang et al. 2017



“Adversarial” examples from real life

e X #
cldl SR

R

(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water: (C) No Person: 0.97,
0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors: Mammal: 0.96, Water: 0.94,
0.98, Mammal: 0.98 0.97, Seashore: 0.97 Beach: 0.94, Two: 0.94

S. Beery et al., Recognition in Terra Incognita, 2018



Adversarial examples - segmentation and detection.
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Figure 8: Figure taken from Xie et al. (2017). The top row is the input (adver-
sarial perturbation already added) to the segmentation network, and the bottom
row is the output. The red, blue and black regions are predicted as airplane,
bus and background, respectively.

C. Xie et al., Adversarial Examples for Semantic Segmentation and Object Detection, The Johns Hopkins University, 2017



Robustness

— Azimuth |50 a0 g0 905 270
Elevation

0 ~ 0713 0.769 0.930 0.319

30 0.900 1.000 0.588 1.000 0.710

60 0.255 0.100 0.148 0.296 0.649

Figure 2: Figure taken from Qiu and Yuille (2016). UnrealCV allows vision re-
searchers to easily manipulate synthetic scenes, e.g. by changing the viewpoint
of the sofa. We found that the Average Precision (AP) of Faster-RCNN (Ren
et al., 2015) detection of the sofa varies from 0.1 to 1.0, showing extreme sen-
sitivity to viewpoint. This is perhaps because the biases in the training cause
Faster-RCNN to favor specific viewpoints.

UnrealCV: Connecting Computer Vision to Unreal Engine



Robustness

Mask R-CNN



https://docs.google.com/file/d/1kb7jl8odr8zvzHCFhYZ0puJlvJXChCDa/preview
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Traffic monitoring system, for
intelligent road sign using multiple
sensors. The sign will be equipped
with different sensors ...

Computer Vision. The goal is to

transformation

perform reliable vehicle counting /
detection without any manual
calibration. This means that system
must be robust to various road
conditions, camera angles and energy
efficient.



Vehicle detection example.

UA-Detrac dataset. 140 thousand frames in the UA-DETRAC dataset and 8250
vehicles that are manually annotated, leading to a total of 1.21 million labeled

bounding boxes of objects, cameras at 24 different locations at Beijing and
Tianjin.

No camera is shared between train and test dataset, however the dataset clearly
show some similarities.




Vehicle detection (real life)




Vehicle detection in the wild

e Seemingly much simpler scenario

e Significant drop in results

e Obtained results similar to background subtraction methods (no training
required)

e Deep nets can provide great improvement in some scenarios, and none in
others.




Vehicle detection in the wild

Detector Overall Cars & Vans Trucks
SqueezeDet 42.74% 75.2% 8.03%
Background subtraction | 41.24% 48.47% 31.8%

Problem with generalization to new viewpoints
Test distribution of vehicles != train distribution of vehicles
No generalization to new object subcategories
DL algorithms needs to be more robust to be deployed to various

environments




Learning for the long-tail
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Autonomous driving

e First death (Tesla 2016) - the white side of the

tractor trailer against a brightly lit sky

e Uber death crash (2018):

o too low threshold. Cyclist ignored as false
positive

e Volvo plans postponed in 2017 by 4
years (also only level4 (fully automatic in
certain conditions) instead of level5)

e Model-free supervised learning - does not scale when we want to reach near
100% accuracy

e Situations we are the most interested in occurs very rarely

e How to model occlusions (which number is infinite)?



Motivation

1. ltis easy to see that a single object can be occluded in an exponential number of ways
2. Humans are very adaptive to changes in context (...) by contrast, Deep Nets appear more sensitive
to context

These complexity considerations mean that certain visual tasks require dealing with an exponential
number of hypotheses. This is highly problematic from a machine learning perspective, because such
algorithms may require, in principle, exponential amounts of data

In short, the standard vision evaluation methods will start having problems as we develop
increasingly complicated vision models.

From an intuitive perspective, there will be many rare events which will not be well represented in
the datasets.

How to learn models which are exponentially complex when there is only limited amounts of data
available?



Compositional models

Compositional Models
represent objects in terms of:

A

i) primitives D fU l T

e oObject parts
e their spatial relations /l\ /1\‘

ii) sub-parts
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words” for real images?
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iv) object

template relation: relation: relation:
attached along attached along attached at start
type level

J. B. Tenenbaum et al., Human-level concept learning through probabilistic program induction, 2015



Coarse root filter

Deformable Part Model (DPM) 1 2]
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Semantic parts detection with visual concepts under
occlusion

Our technique is based on the hypothesis that semantic parts are represented by populations of neurons rather than by single filters. We
propose a clustering technique to extract part representations, which we call Visual Concepts.
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Figure 4: Figure taken from Wang et al. (2015). The visual concepts obtained
by population encoding are visually tight and we can identify the parent object
class pretty easily by just looking at the mid-level concepts.

Unsupervised learning of object semantic parts from internal states of CNNs by population encoding



Task - semantic part detection

Object: car; SP #2o: licence plate
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| List of voted VC’s:
=7 ) 1. #160: score = 0.393
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Fa 2. #245: score = 0.091
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3. #091: score = 0.053
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1. #073: score = 0.020 v #235
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DeepVoting: DeepVoting: A Robust and Explainable Deep
Network for Semantic Part Detection under Partial Occlusion

No Occlusions LI L2 L3
Category KVC ]DVC] VT ] FR ] DV [D\"+ VT [ FR [ DV TDV+ vT ] FR ] DV ]DV+ VT [ FR [ DV ]DV+

airplane 15.8 |26.6 [30.6(56.9|59.0]|60.2 || 23.2(35.4|40.6|40.6 || 19.3]|27.0|31.4(32.3|15.1]|20.1|25.9|254
bicycle 58.0 |52.3 177.8|90.6(89.8(90.8 | 71.7|77.0|83.5|85.2||66.3|62.0(78.7|79.6 || 54.3|41.1(63.0| 62.5
bus 23.8 |25.1 |58.1]|86.3(78.4(81.3|31.3|555{569]{65.8|19.3/40.1|44.1|54.6|| 9.5(25.8|30.8|40.5
car 252 |36.5 |63.4|83.9(80.4(80.6 || 35.9|48.8]56.1|57.3(/23.6/30.9/40.0|141.7 || 13.8( 19.8|27.3| 294
motorbike ||32.7 [29.2 [53.4(63.7|65.2]|69.7 ||44.1(42.2|51.7|55.5||34.7|32.4|41.4(43.4|(24.1|120.1|29.4| 31.2
train 123 |12.8 [35.5(59.9|59.4]|61.2|(21.7(30.6|33.6/43.7 || 84|17.7|19.8(29.8| 3.7|10.9|13.3|22.2
mean 28.0 [30.4 |53.1|73.6(72.0|74.0 | 38.0|48.3[53.7|58.0 || 28.6|35.0|42.6|46.9 | 20.1 [ 23.0| 31.6| 35.2

Semantic parts detection better and Faster R-CNN on heavy occluded objects.

No occlusions at all in training set.



Conclusions

e Deep Net performance on benchmarked datasets, no matter how large, may
fail to extend to good performance images outside the dataset.

e Context plays a crucial role in object detection

e Lots of work happening right now with minimal supervision (self-supervised
learning)

e Compositional models are gaining some attention (i.e. fine-grained
classification)



Some reading

Compositional models:

D. George et al., A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs,
Vicarious, 2017

J. B. Tenenbaum et al., Human-level concept learning through probabilistic program induction, 2015
Deep Nets understanding:

J. Jo, Y. Bengio, Measuring the tendency of CNNs to Learn Surface Statistical Regularities, 2017

Why does deep and cheap learning work so well?
https://blog.acolyer.org/2016/10/05/why-does-deep-and-cheap-learning-work-so-well/

General Al:
J. B. Tenenbaum et al., Building Machines That Learn and Think Like People, 2016

G. Marcus, Innateness, AlphaZero, and Atrtificial Intelligence , 2018



